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Question 1

(LP duality)

a) The dual version of the problem is given by:(2p)

maximize w = 3y1 +4y2,

subject to y1 −2y2 ≤ 2,

2y1 +y2 ≤ 1,

3y1 ≤α,

−y1 +3y2 ≤ 0,

3y1 −2y2 ≤ 1,

y1, y2 ≥ 0.

With α = 1, sketching the feasible set (see Figure 1) shows that y∗ =
(1

3
, 1

9
)T with w∗ = 13

9
. From the graph it is easy to se that the constraints

corresponding to x1, x2 and x5 are not active, hence x∗

1 = x∗

2 = x∗

5 = 0
must hold. Both dual variables are stricly positive in the optimum point,
and therefore both primal constraints must hold with equality. For this
to happen, we must have x∗

3 = 13

9
and x∗

4 = 4

3
. This gives (as expected)

z∗ = 13

9
= w∗.

Figure 1: The dual feasible set.

b) Changing α means moving the vertical constraint horizontally. We see that(1p)
if α < 0 the dual feasible set is empty and x

�

can no longer be optimal
due to strong duality. If we choose α > 9

7
the vertical constraint becomes

inactive and x∗

3 can no longer stay positive due to complementarity. For
α ∈ [0, 9

7
] the dual basis remain optimal and so does x∗.
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Question 2(3p)

(sufficiency of the KKT conditions under convexity)

See Theorem 5.45.

Question 3(3p)

(Farkas Lemma)

Show that {x ∈ R
n | Ax ≥ 0m, bTy < 0 } is inconsistent by showing that

{y ∈ R
m | ATy = 0n, y ≥ 0m } has a solution y = (1, 1)T.

Question 4(3p)

(the Frank–Wolfe algorithm)

Starting at x0 = (1, 2)T, the algorithm proceeds as follows: f(x0) = 41; ∇f(x0) =
(40, 2)T; y0 = (0, 0)T; the lower bound z(y0) = f(x0)+∇f(x0)

T(y0 −x0) = −3;
p0 = y0 − x0 = −(1, 2)T; f(x0 + αp0) = 10(2 − α)2 + (1 − 2α)2, which yields
minimum α = 1 over the interval α ∈ [0, 1]; x1 = (0, 0)T; f(x1) = 11; ∇f(x1) =
(20,−2)T; y1 = (0, 2)T; the lower bound is z(y1) = f(x1)+∇f(x1)

T(y1−x1) = 7;
p1 = (0, 2)T; f(x1 + αp1) = 10 + (2α − 1)2, which yields minimum in α = 0.5;
x2 = (0, 1)T; f(x2) = 10; ∇f(x2) = (20, 0)T; y2 = (0, 0)T (for example). The
lower and upper bounds are equal, hence x2 = (0, 1)T = x∗, with optimal value
f ∗ = 10.
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Question 5

(the Levenberg–Marquardt modification of Newton’s method)

a) The Slater CQ holds, so the optimum must be a KKT point. Use the KKT(1p)
conditions to get

∇2f(x)p + ∇f(x) + 2µp = (∇2f(x) + 2µIn)p + ∇f(x) = 0n,

µ (‖p‖2 − δ) = 0,

µ ≥ 0.

b) The Hessian at x0 is(1p)

∇2f(x0) =

[

−4 0
0 2

]

,

which requires a shift σ > 4, otherwise the step p is not a descent direction.

c) Set p = −α∇f(x), and compute the optimal value of α:(1p)

minimize φ(α) =
1

2
α2∇f(x)∇2f(x)∇f(x) + α‖∇f(x)‖2

subject to α ≤
√

δ

‖∇f(x)‖

Which gives

α = minimum

{
√

δ

‖∇f(x)‖ ,
‖∇f(x)‖2

∇f(x)T∇2f(x)∇f(x)

}

.
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Question 6(3p)

(modelling)

Introduce the variables:

xj Amount of coal in tonnes to be transp to mill j, j = 1, 2
yij Amount of ore in tonnes to be transp from mine i to mill j, i = 1, 2, 3; j = 1, 2
uj Amount of energy in kWh used in mill j, j = 1, 2
vj Produced amount of steel in mill j, j = 1, 2
wjk Number of produced units of product k in mill j, j = 1, 2; k = 1, 2

(where k = 1 represents plates and k = 2 represents pipes)

With the notation in the problem formulation, the objective is

min
∑

j

(g + rj)xj +
∑

i

∑

j

(h + tij)yij +
∑

j

puj +
∑

j

qvj −
∑

j

∑

k

skwjk

and the constraints are

∑

j

yij ≤ cpi, i = 1, 2, 3, (1)

∑

j

wjk ≤ dk, k = 1, 2, (2)

vj ≤
xj

a
, j = 1, 2, (3)

vj ≤
∑

i

yij

b
, j = 1, 2, (4)

vj ≤
uj

c
, j = 1, 2, (5)

vj ≥
∑

k

wjk

ek

, j = 1, 2, (6)

xj, yij, uj, vj, wjk ≥ 0, ∀i, j, k, (7)

where (1) is the capacity constraint in the ore mines, (2) is the limitation of the
market demand, (3)–(5) are the process constrint telling how much raw material
that at least is needed, (6) the balance constraint in the production of prod-
uct using the steel and finally (7) the logical non-negativity constraints on all
variables.
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Question 7

(linear programming duality and optimality)

a) Let the Lagrange multipliers be denoted by µ ∈ R
m
+ and σ ∈ R

n
+, respec-(1p)

tively.

Setting the partial derivative of the Lagrangian L(x, µ, σ) := cTx+µT(b−
Ax)−σTx to zero yields that σ = c−ATµ must hold. (This can be used to
eliminate σ altogether.) Inserting this into the Lagrangian function yields
that the optimal value of the Lagrangian when minimized over x ∈ R

n is
bTµ. According to the construction of the Lagrangian dual problem, bTµ

should then be maximized over the constraints that the dual variables are
non-negative; here, we obtain that µ ≥ 0m, and from σ ≥ 0n we further
obtain that ATµ ≤ c must hold. The Lagrangian dual problem hence is
equivalent to the canonical LP dual:

maximize w = bTµ, (D)

subject to ATµ ≤ c,

µ ≥ 0n.

b) We identify X = R
n, ` = m + n, and the vector(2p)

g(x) =

(

b − Ax

−x

)

.

The optimality conditions of (1) include both multiplier vectors µ and σ,
but σ is eliminated here as well. Primal feasibility corresponds to the
requirements that Ax ≥ b and x ≥ 0n hold, while dual feasibility was above
shown to be equivalent to the requirements that ATµ ≤ c and µ ≥ 0m hold.
Finally, complementarity yields that µT(b − Ax) = 0 hold, as well as the
condition that σTx = 0 holds; the latter reduces (thanks to the possibility
to eliminate σ) to xT(ATµ − c) = 0, the familiar one. We are done.


