TMA947/MAN280 OPTIMIZATION, BASIC COURSE

Date: 09-04-14
Examiner: Michael Patriksson

Question 1

(the simplex method)
$(2 \mathbf{p}) \quad$ a) A non-negative slack (surplus) variable is subtracted from the first constraint to transform the problem into standard form.

$$
\begin{array}{ll}
\operatorname{minimize} z=4 x_{1}+2 x_{2}+x_{3}, \\
\text { subject to } \quad & 2 x_{1}+x_{3}-s_{1}=3, \\
& 2 x_{1}+2 x_{2}+x_{3}=5, \\
& x_{1}, \quad x_{2}, \quad x_{3}, \quad s_{1} \geq 0 .
\end{array}
$$

We start by formulating a phase 1 problem with an artificial variable $a_{1} \geq 0$ added in the first constraint. x_{2} can be used as a second basic variable.

$$
\begin{array}{rlr}
\operatorname{minimize} \quad w= & a_{1}, \\
\text { subject to } \quad 2 x_{1} \quad+x_{3}-s_{1}+a_{1} & =3, \\
& =5, \\
& 2 x_{1}+2 x_{2}+x_{3} & \\
& x_{1}, \quad x_{2}, \quad x_{3}, \quad s_{1}, \quad a_{1} & \geq 0 .
\end{array}
$$

We start with the BFS given by $\left(x_{2}, a_{1}\right)^{\mathrm{T}}$. In the first iteration of the simplex algorithm, x_{1} has the least reduced cost (-2) and is chosen as the incoming variable. The minimum ration test shows that a_{1} should leave the basis. By updating the basis and computing the reduced costs we see that we are now optimal with $w^{*}=0$ and we proceed to phase 2 .
The BFS is given by $\boldsymbol{x}_{B}=\left(x_{2}, x_{1}\right)^{\mathrm{T}}, \boldsymbol{x}_{N}=\left(x_{3}, s_{1}\right)^{\mathrm{T}}$ and the reduced costs with the phase 2 cost vector are $\tilde{\boldsymbol{c}}_{\left(x_{3}, s_{1}\right)}^{\mathrm{T}}=\left(-\frac{1}{2}, \frac{1}{2}\right)$. The reduced cost for x_{3} is negative and x_{3} is chosen to enter the basis. $\boldsymbol{B}^{-1} \boldsymbol{b}=\left(1, \frac{3}{2}\right)^{\mathrm{T}}$ and $\boldsymbol{B}^{-1} \boldsymbol{N}_{x_{3}}=\left(0, \frac{1}{2}\right)^{\mathrm{T}}$, therefore x_{1} should leave the basis. Updating the basis and computing the new reduced costs gives that $\tilde{\boldsymbol{c}}_{\left(x_{1}, s_{1}\right)}^{\mathrm{T}}=(2,0) \geq \mathbf{0}$ and thus the optimality condition is fulfilled for the current basis. We have $\boldsymbol{x}_{B}^{*}=(1,3)^{\mathrm{T}}$, or in the original variables, $\boldsymbol{x}^{*}=\left(x_{1}, x_{2}, x_{3}\right)^{*}=(0,1,3)^{\mathrm{T}}$, with the optimal value $z^{*}=5$.
(1p) b) The marginal improvement (for a non-degenerate optimal solution) when modifying the right-hand-side vector is given by the values of the dual variables (the "shadow prices"). These are given by $\boldsymbol{y}^{*}=\boldsymbol{c}_{B}^{\mathrm{T}} \boldsymbol{B}^{-1}=(0,1)^{\mathrm{T}}$. Hence, decreasing the first constraint with ϵ gives us nothing. Decreasing the second constraint with ϵ gives an improvement of ϵ of the objective function value.

Question 2

(optimality conditions)

See The Book, Theorem 10.10.

Question 3

(the Frank-Wolfe algorithm)

At $\boldsymbol{x}_{0}=(2,1)^{\mathrm{T}}, \nabla f\left(\boldsymbol{x}_{0}\right)=(2,1)^{\mathrm{T}}$. Minimizing $2 y_{1}+y_{2}$ over the feasible set yields $\boldsymbol{y}_{0}=(-1,1)^{\mathrm{T}}$. The search direction therefore is $\boldsymbol{p}_{0}=\boldsymbol{y}_{0}-\boldsymbol{x}_{0}=(-3,0)^{\mathrm{T}}$. The one-dimensional problem (or, line search) then is to minimize $\varphi(\alpha)=f\left(\boldsymbol{x}_{0}+\right.$ $\left.\alpha \boldsymbol{p}_{0}\right)=\frac{1}{2}(2-3 \alpha)^{2}+\frac{1}{2}$, over $\alpha \in[0,1]$. Setting $\varphi^{\prime}(\alpha)=0$ yields $\alpha=\frac{2}{3}$; this must be the optimal solution to the line search problem as it belongs to $[0,1]$ and φ is a convex function; the latter holds particularly since f itself is convex. We then obtain, with $\alpha_{0}=\frac{2}{3}$, that $\boldsymbol{x}_{1}=\boldsymbol{x}_{0}+\alpha_{0} \boldsymbol{p}_{0}=(0,1)^{\mathrm{T}}$.

To check whether \boldsymbol{x}_{1} is optimal, we can, for example, investigate the variational inequality. We have that $\nabla f\left(\boldsymbol{x}_{1}\right)=(0,1)^{\mathrm{T}}$. At \boldsymbol{x}_{1}, all feasible directions are of the form $\left\{\boldsymbol{p} \in \mathbb{R}^{2} \mid p_{1} \in \mathbb{R}, p_{2}=0\right\}$. Hence, for all feasible directions \boldsymbol{p} we have that $\nabla f\left(\boldsymbol{x}_{1}\right)^{\mathrm{T}} \boldsymbol{p}=0$, and the variational inequality for the problem at hand is fulfilled at \boldsymbol{x}_{1}. Since the problem is convex, $\boldsymbol{x}_{1}=(0,1)^{\mathrm{T}}$ must be an optimal solution. [We can also utilize the upper and lower bounds on the optimal value f^{*} supplied by the algorithm, to reach the same conclusion.]

(3p) Question 4

(modeling)

Introduce the constants d_{i} for the demand of chocolate in month $i=1, \ldots, 12$. Let c_{1} be the price of 1 kg cocoa from the importer and f_{1} the price of 1 kg of cocoa from the market; let c_{2} and f_{2} be the corresponding prices of sugar. Let a_{1} be the amount of cocoa needed for 1 kg of chocolate and a_{2} the amount of sugar. Finally let b be the maximal storage capacity.

Introduce the variables x_{1} and x_{2} for the amount of cocoa/sugar bought from the importer each month. Let $y_{1 i}$ and $y_{2 i}$ be the amount of cocoa/sugar bought at the local market for months $i=1, \ldots, 12$. Finally, let $z_{1 i}$ and $z_{2 i}$ be the amount
of cocoa/sugar left in storage after the production in month $i=1, \ldots, 12$ has been completed. The problem is:

$$
\min \sum_{i=1}^{12} \sum_{j=1}^{2} c_{j} x_{j}+f_{j} y_{j i}
$$

subject to the constraints

$$
\begin{aligned}
\left(x_{j}+y_{j 1}-z_{j 1}\right) & \geq a_{j} d_{1}, \quad j=1,2 \\
\left(x_{j}+y_{j i}+z_{j i-1}-z_{j i}\right) & \geq a_{j} d_{i}, \quad i=2, \ldots, 12, j=1,2, \\
\sum_{j=1}^{2} z_{j i} & \leq b, \quad i=1, \ldots, 12, \\
x_{j}, z_{j i}, y_{j i} & \geq 0 \quad i=1, \ldots, 12, \quad j=1,2 .
\end{aligned}
$$

(3p) Question 5

(gradient projection)

Note first that the feasible region X is a circle with center $\boldsymbol{x}_{C}=\binom{1}{2}^{\mathrm{T}}$ and radius $r=1$. Projecting a point \boldsymbol{y} on X results in taking a step of length r in the direction from \boldsymbol{x}_{C} to \boldsymbol{y}. That is:

$$
\operatorname{Proj}_{X}(\boldsymbol{y})= \begin{cases}\boldsymbol{y} & \text { if } \boldsymbol{y} \in X \\ x_{\boldsymbol{C}}+r \frac{\boldsymbol{y}-\boldsymbol{x}_{C}}{\left\|\boldsymbol{y}-\boldsymbol{x}_{c}\right\|} & \text { if } \boldsymbol{y} \notin X\end{cases}
$$

The gradient is

$$
\begin{equation*}
\nabla f(\boldsymbol{x})=\binom{2\left(x_{1}+x_{2}\right)+6\left(x_{1}-x_{2}\right)}{2\left(x_{1}+x_{2}\right)-6\left(x_{1}-x_{2}\right)} \tag{1}
\end{equation*}
$$

Iteration 1: $\boldsymbol{x}^{0}=\left(\begin{array}{ll}1 & 2\end{array}\right)^{T}, \nabla f\left(\boldsymbol{x}^{0}\right)=(012)^{\mathrm{T}} . \boldsymbol{x}^{0}-\alpha \nabla f\left(\boldsymbol{x}^{0}\right)=\left(\begin{array}{ll}1 & 2\end{array}\right)^{\mathrm{T}}-(03)^{\mathrm{T}}=$ $(1-1)^{\mathrm{T}}$. $\operatorname{Proj}_{X}(1-1)^{\mathrm{T}}=(12)^{\mathrm{T}}-(01)^{\mathrm{T}}=(11)=\boldsymbol{x}^{1}$.

Iteration 2: $\boldsymbol{x}^{1}=\left(\begin{array}{ll}1 & 1\end{array}\right)^{T}, \nabla f\left(\boldsymbol{x}^{1}\right)=\left(\begin{array}{ll}4 & 4\end{array}\right)^{\mathrm{T}} \cdot \boldsymbol{x}^{1}-\alpha \nabla f\left(\boldsymbol{x}^{1}\right)=\left(\begin{array}{ll}1 & 1\end{array}\right)^{\mathrm{T}}-\left(\begin{array}{ll}1 & 1\end{array}\right)^{\mathrm{T}}=$ $\left(\begin{array}{ll}0 & 0\end{array}\right)^{\mathrm{T}} . \operatorname{Proj}_{X}\left(\begin{array}{ll}0 & 0\end{array}\right)^{\mathrm{T}}=\left(\begin{array}{ll}1 & 2\end{array}\right)^{\mathrm{T}}-\frac{(12)^{\mathrm{T}}}{\sqrt{5}}=\frac{1}{\sqrt{5}}\binom{\sqrt{5}-1}{2 \sqrt{5}-2}=\boldsymbol{x}^{2}$.

We have convex constraints with an interior point, hence Slaters CQ imply that KKT is necessary for local optimality. The constraint g is active. $\nabla f\left(\boldsymbol{x}^{2}\right)=$ $\left(12\left(1-\frac{1}{\sqrt{5}}\right)\right)$ and $\nabla g\left(\boldsymbol{x}^{2}\right)=\frac{1}{\sqrt{5}}\binom{-2}{-4}$, i.e., they are not parallel. Hence \boldsymbol{x}^{2} is not a KKT point, and therefore it is not a local (nor a global) minimum.

(3p) Question 6

(a simple optimization problem)

The KKT conditions for this problem amount, apart from complementarity and primal feasibility, to finding a solution in the pair $(\boldsymbol{x}, \mu)^{\mathrm{T}} \in \mathbb{R}^{n} \times \mathbb{R}_{+}$to the nonlinear equations formed by the stationarity conditions for the Lagrangian with respect to \boldsymbol{x}, that is, for all $j=1, \ldots, n$,

$$
\frac{a_{j}}{x_{j}^{2}}+\frac{\mu}{x_{j}}=0 .
$$

This is clearly impossible, as $x_{j}>0$ must be fulfilled, and $a_{j}>0$ holds. We therefore conclude that there are not KKT points for this problem.

Can there be optimal solutions that are not KKT points? No, because the linear independence CQ (LICQ) is fulfilled for this problem, so the KKT conditions are necessary conditions for both local and global optimal solutions.

Question 7

(polyhedral theory - LP duality)

Since P is contained in a ball it must be bounded. Also, by assumption it is non-empty. Therefore, for all $\boldsymbol{c} \in \mathbb{R}^{n}$, there must exist an optimal solution to the problem

$$
\begin{array}{lr}
\operatorname{minimize} & \boldsymbol{c}^{\mathrm{T}} \boldsymbol{x} \\
\text { subject to } & \boldsymbol{A} \boldsymbol{x} \leq \boldsymbol{b}, \\
\boldsymbol{x} \geq \mathbf{0}
\end{array}
$$

Then, from the Strong duality theorem it is guaranteed that there is an optimal solution also to the problem

$$
\begin{array}{ll}
\operatorname{maximize} & \boldsymbol{b}^{\mathrm{T}} \boldsymbol{y}, \\
\text { subject to } & \boldsymbol{A}^{\mathrm{T}} \boldsymbol{y} \leq \boldsymbol{c}, \\
& \boldsymbol{y} \leq \mathbf{0} .
\end{array}
$$

The optimal solutions \boldsymbol{x}^{*} and \boldsymbol{y}^{*} are of course feasible, and we know that $c^{\mathrm{T}} \boldsymbol{x}^{*}=$ $b^{\mathrm{T}} \boldsymbol{y}^{*}$ holds (then also $c^{\mathrm{T}} \boldsymbol{x}^{*} \leq b^{\mathrm{T}} \boldsymbol{y}^{*}$ holds, which is not true for a general feasible pair). So, with $\boldsymbol{z}=\left(\left(\boldsymbol{x}^{*}\right)^{\mathrm{T}},\left(\boldsymbol{y}^{*}\right)^{\mathrm{T}}\right)^{\mathrm{T}}$ all of the inequalities are fulfilled, and the polyhedron Q is proved to be non-empty.

