TMA947/MAN280 OPTIMIZATION, BASIC COURSE

Date: 09-08-27
Examiner: Michael Patriksson

Question 1

(the simplex method)
$(2 \mathbf{p}) \quad$ a) To transform the problem to standard form, first change the sign on the second contraint and then add a non-negative slack variable to the first constraint and subtract a non-negative slack (surplus) variable from the second. We get

$$
\begin{aligned}
& \operatorname{minimize} \quad z=2 x_{1}-x_{2}+x_{3}, \\
& \text { subject to } \quad x_{1}+2 x_{2}-x_{3}+s_{1}=7, \\
& 2 x_{1}-x_{2}+3 x_{3}-s_{2}=3, \\
& x_{1}, \quad x_{2} \quad x_{3}, \quad s_{1}, \quad s_{2} \geq 0
\end{aligned}
$$

Now start phase 1 using an artificial variable $a \geq 0$ added in the second constraint. s_{1} can be used as a second basic variable.

$$
\begin{array}{llr}
\operatorname{minimize} \quad w= & a, \\
\text { subject to } & x_{1}+2 x_{2}-x_{3}+s_{1} & =7, \\
2 x_{1}-x_{2}+3 x_{3} \quad-s_{2}+a & =3 \\
& x_{1}, \quad x_{2} \quad x_{3}, \quad s_{1}, \quad s_{2}, & a \geq 0
\end{array}
$$

We start with the BFS given by $\left(s_{1}, a\right)^{\mathrm{T}}$. In the first iteration of the simplex algorithm, x_{3} has the least reduced cost (-3) and is chosen as the incoming variable. The minimum ratio test then shows that a should leave the basis. By updating the basis and computing the reduced costs we see that we are now optimal with $w^{*}=0$ and we proceed to phase 2 .
The BFS is given by $\boldsymbol{x}_{B}=\left(s_{1}, x_{3}\right)^{\mathrm{T}}, \boldsymbol{x}_{N}=\left(x_{1}, x_{2}, s_{2}\right)^{\mathrm{T}}$ and the reduced costs with the phase 2 cost vector are $\tilde{\boldsymbol{c}}_{\left(x_{1}, x_{2}, s_{2}\right)}^{\mathrm{T}}=\left(\frac{4}{3},-\frac{2}{3}, \frac{1}{3}\right)$. The reduced cost is negative for x_{2} which is the only eligable incoming variable. $\boldsymbol{B}^{-1} \boldsymbol{b}=$ $(8,1)^{\mathrm{T}}$ and $\boldsymbol{B}^{-1} \boldsymbol{N}_{x_{2}}=\left(\frac{5}{3},-\frac{1}{3}\right)^{\mathrm{T}}$, so the minimum ratio test shows that s_{1} should leave the basis. Updating the basis and computing the new reduced costs gives $\tilde{\boldsymbol{c}}_{\left(x_{1}, s_{1}, s_{2}\right)}^{\mathrm{T}}=\left(2, \frac{2}{5}, \frac{1}{5}\right) \geq \mathbf{0}$ and thus the optimality condition is fulfilled for the current basis. We have $\boldsymbol{x}_{B}^{*}=\left(\frac{24}{5}, \frac{13}{5}\right)^{\mathrm{T}}$, or in the original variables, $\boldsymbol{x}^{*}=\left(x_{1}, x_{2}, x_{3}\right)^{*}=\left(0, \frac{24}{5}, \frac{13}{5}\right)^{\mathrm{T}}$, with the optimal value $z^{*}=-\frac{11}{5}$.
$(\mathbf{1 p}) \quad$ b) The reduced costs are not affected by the right-hand-side vector, so the
only thing that has to be checked is when the current basis stays feasible.

$$
\boldsymbol{B}^{-1} \boldsymbol{b} \geq \mathbf{0} \Leftrightarrow \frac{1}{3}\left(\begin{array}{ll}
3 & 1 \\
0 & 1
\end{array}\right)\binom{b_{1}}{3} \geq \mathbf{0} \Leftrightarrow\left\{\begin{array}{l}
b_{1}+1 \geq 0 \\
3
\end{array} \quad \geq 0.0 b_{1} \geq-1\right.
$$

Thus, the current basis stays optimal for all $b_{1} \geq-1$.

(3p) Question 2

(modeling)

Introduce the variables $x_{i j}=$ number of workhours that the crew j spends in turbine i,

$$
\begin{aligned}
y_{i j} & = \begin{cases}1, & \text { crew } j \text { performs maintenance at turbine } i, \\
0, & \text { otherwise } ;\end{cases} \\
z_{i} & = \begin{cases}1, & \text { the turbine } i \text { is not operational } \\
0, & \text { otherwise }\end{cases}
\end{aligned}
$$

The model is

$$
\begin{aligned}
& \operatorname{minimize} \sum_{i=1}^{n} z_{i} e_{i} \\
& \text { subject to } \quad \\
& d_{i}-\sum_{j=1}^{m} x_{i j} \leq d_{i} z_{i}, \quad i \in\{1, \ldots, n\}, \\
& x_{i j} \leq d_{j} y_{i j}, i \in\{1, \ldots, n\}, j \in\{1, \ldots, m\}, \\
& \sum_{i=1}^{n} y_{i j} \leq 2, \quad i \in\{1, \ldots, n\}, j \in\{1, \ldots, m\}, \\
& \\
& \sum_{i=1}^{n} x_{i j}+\sum_{i=1}^{n} 2 c_{i j} y_{i j} \leq 8, j \in\{1, \ldots, m\}, \\
& x_{i j} \geq 0, y_{i j}, z_{i} \in\{0,1\} \quad i \in\{1, \ldots, n\}, j \in\{1, \ldots, m\} .
\end{aligned}
$$

Question 3

(optimality conditions)
See The Book, Theorem 10.10.

Question 4

(exterior penalty method)
(1p) a) Direct application of the KKT conditions yield that $\boldsymbol{x}^{*}=\left(\frac{3}{5}, \frac{2}{5}\right)^{\mathrm{T}}$ and $\lambda^{*}=$ $-1 / 5$ uniquely.
$(1 \mathbf{p}) \quad$ b) Letting the penalty parameter be $\nu>0$, it follows that $\boldsymbol{x}_{\nu}=\frac{\nu}{1+5 \nu}(3,2)^{\mathrm{T}}$. Clearly, as $\nu \rightarrow \infty$ convergence to the optimal primal-dual solution follows.
(1p) c) From the stationarity conditions of the penalty function $\boldsymbol{x} \mapsto f(\boldsymbol{x})+\lambda h(\boldsymbol{x})+$ $\nu|h(\boldsymbol{x})|^{2}$ follow that \boldsymbol{x}_{ν} fulfills $\nabla f\left(\boldsymbol{x}_{\nu}\right)+\left[2 \nu h\left(\boldsymbol{x}_{\nu}\right)\right] \nabla h\left(\boldsymbol{x}_{\nu}\right)=0^{2}$, and hence a proper Lagrange multiplier estimate comes out as $\lambda_{\nu}:=2 \nu h\left(\boldsymbol{x}_{\nu}\right)$. Insertion from b) yields $\lambda_{\nu}=\frac{-\nu}{1+5 \nu}$, which tends to $\lambda^{*}=-\frac{1}{5}$ as $\nu \rightarrow \infty$.

Question 5

(topics in convexity)
(2p) a) See Theorem 3.40.
(1p) b) See Theorem 3.42.

(3p) Question 6

(Lagrangian dual)
$L(x, \mu)=-x_{1}-1 / 2 x_{2}+\mu_{1}\left(x_{1}^{2}+x_{2}^{2}-1\right)+\mu_{2}\left(1-\left(x_{1}-1\right)^{2}-\left(x_{2}-1\right)^{2}\right)$.
The dual function is $q(\mu)=\min _{x}(L(x, \mu))=\min _{x_{1}} \underbrace{\left(-x_{1}+\mu_{1} x_{1}^{2}-\mu_{2}\left(x_{1}-1\right)^{2}\right)}_{q_{1}\left(x_{1}\right)}$
$+\min _{x_{2}} \underbrace{\left(-1 / 2 x_{1}+\mu_{1} x_{1}^{2}-\mu_{2}\left(x_{1}-1\right)^{2}\right)+\mu_{2}}_{q_{2}\left(x_{2}\right)}$.
$\frac{d q_{1}}{d x_{1}}=-1+2 \mu_{1} x_{1}-2 \mu_{2}\left(x_{1}-1\right)$ and $\frac{d^{2} q_{1}}{d x_{1}^{2}}=2\left(\mu_{1}-\mu_{2}\right)$. We notice that q_{1} is strictly convex for $\mu_{1}>\mu_{2}$ and strictly concave for $\mu_{1}<\mu_{2}$ and linear for $\mu_{1}=\mu_{2}$. For $\mu_{1}>\mu_{2}$ the minimum is attained attained at $x_{1}=\frac{1-2 \mu_{2}}{2\left(\mu_{1}-\mu_{2}\right)}$ and is $-\infty$ for $\mu_{1}<\mu_{2}$. Similarly for q_{2} we obtain $x_{2}=\frac{1 / 2-2 \mu_{2}}{2\left(\mu_{1}-\mu_{2}\right)}$. Simplifying and inserting into L yields $q(\mu)=\frac{8\left(3-2 \mu_{2}\right) \mu_{2}-16 \mu_{1}^{2}-5}{16\left(\mu_{1}-\mu_{2}\right.}$ if $\mu_{1}>\mu_{2}$. If $\mu_{1}=\mu_{2}$ the derivatives of q_{1} and q_{2} can not be zero simultaneosly. We therefore have $q_{1}(\mu)=-\infty$ or $q_{2}(\mu)=-\infty$. We therefore have $q(\mu)=-\infty$ if $\mu_{1} \leq \mu_{2}$.

The dual problem can be formulated as $\max _{\mu \geq 0} q(\mu)$. The dual problem is always convex; in the pressent case it is also differentiable.
$q(1,1 / 2)=-13 / 8$ and $f(0,1)=-1 / 2$; we can therefore conclude (by weak duality) that $-13 / 8 \leq f^{*} \leq-1 / 2$.

Drawing the feasible region together with the linear objective gives the optimal solution $x^{*}=(1,0), f^{*}=-1$.

The problem is non-convex, hence a dual gap can exist. Assume there is no duality gap, then according to Theorem $6.7 L\left(x^{*}, \mu^{*}\right)=\min _{x} L\left(x, \mu^{*}\right)$. If μ^{*} is optimal then $\mu_{1}^{*}>\mu_{2}^{*}$. Since the function $L(\cdot, \mu)$ is strictly convex, the minimum is obtained at $\nabla_{x} L(\cdot, \mu)=0$. Therefore $1=\frac{1-2 \mu_{2}}{2\left(\mu_{1}-\mu_{2}\right)}$ and $0=\frac{1 / 2-2 \mu_{2}}{2\left(\mu_{1}-\mu_{2}\right)}$. This yields $\mu_{2}=1 / 4$ and $\mu_{1}=1 / 2$. Since $q(1 / 2,1 / 4)=-1$ no duality gap exists.

Question 7

(true or false claims in optimization)

(1p) a) True. The important implication is that if a problem is unbounded, then its dual must be infeasible. The adding of an extra variable relaxes the original problem. Since there is a feasible point to the original problem, the extended problem will also have a feasible solution (e.g., by setting $x_{4}=0$). If the dual to the extended problem is unbounded the primal problem (dual to the dual) must be infeasible. This is not the case and the claim is proved.
$(1 \mathbf{p}) \quad$ b) True. The equality subsystem at $(1,1,1)^{\mathrm{T}}$ consists of all rows but the third, so

$$
\tilde{A}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1 \\
1 & 1 & 1
\end{array}\right)
$$

The rank of \tilde{A} is 3 since the first three rows are linearly independent. So, $\operatorname{rank}(\tilde{A})=n$ which implies that the proposed point is an extreme point (in this case corresponding to a degenerate basis).
$(1 \mathbf{p}) \quad$ c) False. A counterexample in \mathbb{R}^{2} is given by the problem defined by $f(\boldsymbol{x})=$ $x_{2}, g(\boldsymbol{x})=-x_{1}^{2}-x_{2}$ at the point $\boldsymbol{x}^{*}=(0,0)^{\mathrm{T}}$. The conditions are fulfilled, but all balls around \boldsymbol{x}^{*} contain points with smaller objective values.

