Chalmers/Gothenburg University

TMA947/MAN280
 OPTIMIZATION, BASIC COURSE

Date: $10-12-13$
Examiner: Michael Patriksson

Question 1

(the simplex method)
$\mathbf{(2 p)}$ a) We first rewrite the problem on standard form. We multiply the objective by -1 to obtain a minimization problem and introduce the variables x_{2}^{+} and x_{2}^{-}such that $x_{2}=x_{2}^{+}-x_{2}^{-}$, and slack variables s_{1} and s_{2}.

$$
\begin{array}{lrrrrrl}
\operatorname{minimize} z== & -3 x_{1} & -x_{2}^{+} & +x_{2}^{-} & & & \\
\text {subject to } & 3 x_{1} & +2 x_{2}^{+} & -2 x_{2}^{-} & -s_{1} & & =1 \\
& 2 x_{1} & +x_{2}^{+} & -x_{2}^{-} & & +s_{2} & =2 \\
& x_{1}, & x_{2}^{+}, & x_{2}^{-}, & s_{1}, & s_{2} & \geq 0 .
\end{array}
$$

In phase I the artificial variable a is added in the first constraint, s_{2} is used as the second basic variable. We obtain the problem

\[

\]

The starting BFS is thus $\left(a, s_{2}\right)^{\mathrm{T}}$. Calculating the vector of reduced costs for the non-basic variables $x_{1}, x_{2}^{+}, x_{2}^{-}$and s_{1} yields $(-3,-2,2,1)^{\mathrm{T}}$. Thus x_{1} enters the basis. The minimum ratio test shows that a should leave the basis. We thus have a BFS without artificial variables, and may proceed with pha se II.

We have the basic variables $\left(x_{1}, s_{2}\right)$. The vector of reduced costs for the non-basic variables x_{2}^{+}, x_{2}^{-}and s_{1} is $(1,-1,-1)$. We may choose either x_{2}^{-} or s_{1} to enter the basis. We take x_{2}^{-}. The minimum ratio test implies that s_{2} must leave the basis. We now have x_{1}, x_{2}^{-}as basic variables. The vector of reduced costs for the non-basic variables x_{2}^{+}, s_{1}, s_{2} is $(0,1,3)^{\mathrm{T}}$. The current point is optimal. We thus have $\left(x_{1}, x_{2}^{-}, x_{2}^{+}, s_{1}, s_{2}\right)=(3,4,0,0,0)$, or in the original variables, $\left(x_{1}, x_{2}\right)=(3,-4)$.
$(\mathbf{1 p}) \quad$ b) The reduced costs are not strictly positive; we can thus not conclude that there is a unique optimal solution. We may introduce x_{2}^{+}into the basis; the minimum ratio test can however not provide a variable that leaves the basis (all entries are negative in $B^{-1} N_{j}$). This is because we may let $x_{2}^{+}=\alpha$, $x_{2}^{-}=4+\alpha$ for all $\alpha \geq 0$ and obtain an optimal solution in the problem written on standard form. All these solutions however correspond to the
same solution $\left(x_{1}, x_{2}\right)=(3,-4)$ in the original problem. The solution in the original problem is unique (which can also be realized by checking that it is the only KKT point).

Question 2

(optimality conditions)

$(2 \mathbf{p}) \quad$ a) Thanks to the linearity of the constraints, the problem satisfies the Abadie constraint qualification and the Karush-Kuhn-Tucker conditions are necessary for the local optimality of \boldsymbol{x}^{*}. As the problem is convex the KKT conditions are also sufficient for \boldsymbol{x}^{*} to be a global optimum.
Introducing the multiplier λ for the equality constraint and $\mu_{j} \geq 0$ for the sign condition on x_{j}, we obtain the Lagrange function $L(\boldsymbol{x}, \mu, \boldsymbol{\lambda}):=$ $-b \lambda+\sum_{j=1}^{n}\left(f_{j}\left(x_{j}\right)-\left[\lambda+\mu_{j}\right] x_{j}\right)$. Setting the partial derivatives of L with respect to each x_{j} to zero yields

$$
\begin{equation*}
f^{\prime}\left(x_{j}^{*}\right)=\lambda^{*}+\mu_{j}^{*}, \quad j=1, \ldots, n . \tag{1}
\end{equation*}
$$

Further, the complementarity conditions state that

$$
\mu_{j}^{*} \cdot x_{j}^{*}=0, \quad j=1, \ldots, n .
$$

Together with the dual feasibility conditions that $\mu_{j}^{*} \geq 0$ for all j and that \boldsymbol{x}^{*} fulfills the primal feasibility conditions that $\boldsymbol{x}^{*} \geq \mathbf{0}^{n}$ and $\sum_{j=1}^{n} x_{j}^{*}=b$, we have stated all the KKT conditions.
$(\mathbf{1} \mathbf{p}) \quad$ b) Suppose that the triple $\left(\boldsymbol{x}^{*}, \mu^{*}, \boldsymbol{\lambda}^{*}\right) \in \mathbb{R}^{n} \times \mathbb{R} \times \mathbb{R}^{n}$ is a Karush-KuhnTucker point. For a j with $x_{j}^{*}>0$ we must therefore have from (1) that $f^{\prime}\left(x_{j}^{*}\right)=\lambda^{*}$. Suppose instead that $x_{j}^{*}=0$. Then, since $\mu_{j}^{*} \geq 0$ must hold, we obtain from (1) that $f^{\prime}\left(x_{j}^{*}\right)=\lambda^{*}+\mu_{j}^{*} \geq \lambda^{*}$, and we are done.

Question 3

(modeling)
$(\mathbf{1 p}) \quad$ a) Introduce the variable $x_{i j}$ for the amount of money person i gives to person
j. The model is to

$$
\begin{array}{ll}
\operatorname{minimize} & \sum_{i=1}^{n} \sum_{j=1}^{n} x_{i j}, \\
\text { subject to } \quad d_{i}+\sum_{j=1}^{n} x_{i j}-\sum_{j=1}^{n} x_{j i}=\frac{1}{n} \sum_{j=1}^{n} d_{j}, & i=1, \ldots, n . \\
x_{i j} \geq 0 & i=1, \ldots, n, j=1, \ldots, n .
\end{array}
$$

$(2 \mathbf{p}) \quad$ b) Introduce the variables $y_{i j}$, where

$$
y_{i j}= \begin{cases}1 & \text { if person } i \text { gives any money to person } j \\ 0 & \text { otherwise }\end{cases}
$$

Then the model is to

$$
\begin{aligned}
\text { minimize } & \sum_{i=1}^{n} \sum_{j=1}^{n} x_{i j} & & \\
\text { subject to } d_{i}+\sum_{j=1}^{n} x_{i j}-\sum_{j=1}^{n} x_{j i} & =\frac{1}{n} \sum_{j=1}^{n} d_{j}, & & i=1, \ldots, n, \\
\sum_{j=1}^{n} y_{i j} & =1, & & i=1, \ldots, n, \\
x_{i j} & \leq M y_{i j}, & & i=1, \ldots, n, j=1, \ldots, n, \\
x_{i j} & \geq 0, & & i=1, \ldots, n, j=1, \ldots, n, \\
y_{i j} & \in\{0,1\}, & & i=1, \ldots, n, j=1, \ldots, n,
\end{aligned}
$$

where M is some large number. $M=\sum_{i=1}^{n} d_{i}$ is large enough.

(3p) Question 4

(the Frank-Wolfe method)

Iteration 1: $\boldsymbol{x}_{0}=(0,0)^{\mathrm{T}}$ is feasible and $f\left(\boldsymbol{x}_{0}\right)=0$, so we get: $[L B D, U B D]=$ $(-\infty, 0] . \nabla f\left(\boldsymbol{x}_{0}\right)=(-3,-6)^{\mathrm{T}}$ and the solution to the LP $\min _{\boldsymbol{y}} \nabla f\left(\boldsymbol{x}_{0}\right)^{\mathrm{T}} \boldsymbol{y}$ is obtained at $\boldsymbol{y}_{0}=(2,2)^{\mathrm{T}}$. Since f is convex, $g(\boldsymbol{y}):=f\left(\boldsymbol{x}_{0}\right)+\nabla f\left(\boldsymbol{x}_{0}\right)^{\mathrm{T}}\left(\boldsymbol{y}-\boldsymbol{x}_{0}\right) \leq$ $f(\boldsymbol{y})$ for all $\boldsymbol{y} \in \mathbb{R}^{\nvdash}$. The LP problem is a relaxation of the original problem, hence an optimal objective value gives a lower bound. The optimal objective value of the LP is $f\left(\boldsymbol{x}_{0}\right)+\nabla f\left(\boldsymbol{x}_{0}\right)^{\mathrm{T}}\left(\boldsymbol{y}_{0}-\boldsymbol{x}_{0}\right)=0+(-3,-6)^{\mathrm{T}}(2,2)=-18$. Hence, $[L B D, U B D]=[-18,0]$. The search direction is $\boldsymbol{p}_{0}=\boldsymbol{y}_{0}-\boldsymbol{x}_{0}=(2,2)^{\mathrm{T}}$. Line search: $\phi(\alpha):=f\left(\boldsymbol{x}_{0}+\alpha \boldsymbol{p}_{0}\right)=f\left((2 \alpha, 2 \alpha)^{\mathrm{T}}\right)=12 \alpha^{2}-18 \alpha . \phi^{\prime}(\alpha)=24 \alpha-18=$ $0 \Rightarrow \alpha=3 / 4<1$. Hence, $\boldsymbol{x}_{1}=(3 / 2,3 / 2)^{\mathrm{T}}$.

Iteration 2: $f\left(\boldsymbol{x}_{1}\right)=-27 / 4$, so $[L B D, U B D]=[-18,-27 / 4] . \quad \nabla f\left(\boldsymbol{x}_{1}\right)=$ $(3 / 2,-3 / 2)^{\mathrm{T}}$ and the solution to the LP $\min _{\boldsymbol{y}} \nabla f\left(\boldsymbol{x}_{1}\right)^{\mathrm{T}} \boldsymbol{y}$ is obtained at $\boldsymbol{y}_{1}=$
$(1,2)^{\mathrm{T}} . f\left(\boldsymbol{x}_{1}\right)+\nabla f\left(\boldsymbol{x}_{1}\right)^{\mathrm{T}}\left(\boldsymbol{y}_{1}-\boldsymbol{x}_{1}\right)=-33 / 4$, so $[L B D, U B D]=[-33 / 4,-27 / 4]$. The search direction is $\boldsymbol{p}_{1}=\boldsymbol{y}_{1}-\boldsymbol{x}_{1}=(-1 / 2,1 / 2)^{\mathrm{T}}$. Line search, $\phi(\alpha):=$ $f\left(\boldsymbol{x}_{1}+\alpha \boldsymbol{p}_{1}\right)=f\left((3 / 2-\alpha / 2,3 / 2+\alpha / 2)^{\mathrm{T}}\right)=\alpha^{2} / 4-(6 / 4) \alpha-27 / 4 . \quad \phi^{\prime}(\alpha)=$ $2 \alpha / 4-3 / 4=0 \Rightarrow \alpha=3>1$. Hence, take $\alpha=1$ and $\boldsymbol{x}_{2}=(1,2)^{\mathrm{T}}$.
$\boldsymbol{x}_{2}=(1,2)^{\mathrm{T}}$ is a KKT point. The objective function is convex (all eigenvalues to the Hessian are non-negative) and the feasible set is a polyhedron, so the problem is convex. The KKT conditions are sufficient for optimality for convex problems, so $\boldsymbol{x}_{2}=(1,2)^{\mathrm{T}}$ is an optimal solution with $f\left(\boldsymbol{x}_{2}\right)=-8$.

Question 5

(Lagrangian duality)
$(\mathbf{1} \mathbf{p})$ a) The problem can be stated as that to minimize $f(\boldsymbol{x}):=\frac{1}{2}\left(x_{1}^{2}+x_{2}^{2}\right)$ subject to the constraints that $x_{1}+x_{2} \geq 4$ and $x_{j} \leq 4, j=1,2$.
$(1 \mathbf{p}) \quad$ b) Introducing the Lagrange multiplier $\mu \geq 0$ for the constraint $x_{1}+x_{2} \geq 4$, the Lagrangian subproblem has the form

$$
\underset{x_{j} \leq 4, j=1,2}{\operatorname{minimize}} 4 \mu+\frac{1}{2} x_{1}^{2}-\mu x_{1}+\frac{1}{2} x_{2}^{2}-\mu x_{2}
$$

The problem separates over each variable, and the solutions are symmetric: for $0 \leq \mu \leq 4, x_{j}=\mu$ for $j=1,2$, while for $\mu>4, x_{j}=4$ for $j=1,2$. The explicit Lagrangian dual function hence is to maximize the function q over $\mu \geq 0$, where $q(\mu)=4 \mu-\mu^{2}$ for $0 \leq \mu \leq 4$, and $q(\mu)=16-4 \mu$ for $\mu \geq 4$. Its derivative hence is $q^{\prime}(\mu)=4-2 \mu$ for $0 \leq \mu \leq 4$, and $q^{\prime}(\mu)=-4$ for $\mu \geq 4$. The Lagrangian dual function clearly is concave over $\mu \geq 0$.
$\mathbf{(1 p)} \quad$ c) The solution to the Lagrangian dual problem is $\mu^{*}=2$. Utilizing the result in b) we may derive that $\boldsymbol{x}^{*}=(2,2)^{\mathrm{T}}$. Strong duality holds, that is, $f\left(\boldsymbol{x}^{*}\right)=q\left(\mu^{*}\right)$.

(3p) Question 6

(optimality conditions)
See Theorem 10.10.

Question 7

(short questions)
(1p) a) X can be defined as an open set! Define $f(x)=x$ and $X=\{0<x<1\}$, the problem does not have an optimal solution.
$(\mathbf{1 p}) \quad$ b) The feasible set is convex (it is the line segment between $(-1,0)$ and $(1,0))$. Th us KKT is sufficient (first question: yes). The set does not have an interior point, thus slater does not hold. LICQ does no t hold either. The objective $f(x, y):=x+y$ would result in an optimal solution at $(-1,0)$, wh ich is not a KKT point, hence KKT is not necessary (second question: no).
$\mathbf{(1 p)} \quad$ c) We will use the notation $\|a\|=\sqrt{\sum_{i=1}^{n} a_{i}^{2}}$. Assume that $\|x-a\|^{2} \leq b$. We have that $\|a-c\|=\|a-x+x-c\| \leq\|a-x\|+\|x-c\|$, where the last inequality is the triangle inequality. Hence $\|x-c\| \geq\|a-c\|-\|a-x\| \geq$ $q \ln d+\sqrt{b}-\sqrt{b}=\ln d$. Therefore $\exp (\|x-c\|) \geq d$. This means that if we satisfy the first constr aint, then the other constraint is automatically satisfied (hence it is redundant). Since the first c onstraint is a convex function, the set is convex.

