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When you answer the questions

Use generally valid methods and theory.
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Do not answer more than one question per page.

At the end of the exam

Sort your solutions by the order of the questions.

Mark on the cover the questions you have answered.
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Question 1

(the Simplex method)

Consider the following linear program:

minimize z =−x1 + 2x2 +x3,

subject to 2x1 + x2 − x3 ≤ 7,

−x1 + 2x2 + 3x3 ≥ 3,

x1, x2, x3 ≥ 0.

a) Solve this problem by using phase I and phase II of the simplex method.(2p)

[Aid: Utilize the identity
(

a b

c d

)

−1

=
1

ad − bc

(

d −b

−c a

)

for producing basis inverses.]

b) Using the information from your solution to the problem above, state(1p)
whether there is an optimal solution to the corresponding dual problem
or not. Motivate! Do not make any additional calculations!

Question 2(3p)

(The Karush–Kuhn–Tucker conditions)

Consider the problem to

minimize f(x),

subject to gi(x) ≤ 0, i = 1, . . . , m,
(1)

where f : R
n → R and gi : R

n → R, i = 1, . . . , m, are given differentiable
functions. Prove the following result.

Assume that at a given point x∗ ∈ S Abadie’s constraint qualification holds. If
x∗ ∈ S is a local minimum of f over S then there exists a vector µ ∈ R

m such
that

∇f(x∗) +

m
∑

i=1

µi∇gi(x
∗) = 0n, (2a)

µigi(x
∗) = 0, i = 1, . . . , m, (2b)

µ ≥ 0m. (2c)
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In other words,

x∗ local minimum of f over S

Abadie’s CQ holds at x∗

}

=⇒ ∃µ ∈ R
m : (2) holds.

You may refer (simply by giving its name) to any additional theorems that you
wish to utilize in your proof.

Question 3

(true or false claims in optimization)

For each of the following three claims, your task is to decide whether it is true or
false. Motivate your answers.

a) The vector p := (1,−1)T is a descent direction for f(x) := (x1 + x2

2
)2 at(1p)

x = (1, 0)T.

b) The vector x := (0, 1)T satisfies the KKT conditions for the problem to(1p)

maximize
x∈

�
2

f(x) := ln(x1 + x2),

subject to x1 + 2x2 ≤ 2,

x2 ≥ 0.

c) Consider the linear program defined by(1p)

f(b) := maximum
x∈

�
n

cTx,

subject to Ax ≤ b, (1)

x ≥ 0n,

where c ∈ R
n, A ∈ R

m×n, and b ∈ R
m, and let y ∈ R

m be the vector
of dual variables associated with the constraints (1). Assume that for the
given value of b there exists a non-degenerate primal optimal BFS. Hence,
there exists a unique optimal dual solution y∗ ∈ R

m. Suppose that y∗

1
> 0

and let b ∈ R
m be such that b1 < b1 < b1 + ε and bi = bi, i = 2, . . . , m. For

small values of ε > 0 it holds that f(b) > f(b).
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Question 4

(nonlinear programming)

Consider the nonlinear program to

minimize f(x),

subject to hj(x) = 0, j = 1, . . . , `,
(1)

where f : R
n → R and hj : R

n → R, j = 1, . . . , `, are given differentiable
functions.

a) When is the problem (1) a convex problem?(1p)

b) Suppose that having utilized a nonlinear programming solver the printout(2p)
is a vector x∗. Suppose that the solver prints that x∗ is a local minimum,
and you can confirm (based on your experience with the problem) that this
is true. But you can also confirm that the vector λ∗ ∈ R

` which is also
printed does not satisfy the KKT conditions together with x∗. Explain
how this can be the case.

Question 5(3p)

(modelling)

Sudoku is an old Japanese number puzzle that has grown in popularity recently.
Some claim that it deals with numbers but has nothing to do with mathematics;
however, this is obviously not true. The rules for a Sudoku puzzle are simple.
We start with a 9 × 9-matrix A which is partitioned into nine 3 × 3-matrices
A1, . . . , A9. Certain entries of A contain numbers from the set {1, . . . , 9}. An
example of such a pre-assignment is shown below.

The Sudoku problem is now to:
Fill the empty entries of the matrix A such that
– each row of A

– each column of A

– each 3 × 3-submatrix A1, . . . , A9

contains every number of {1, . . . , 9} exactly once.

Your task is to model an integer linear program, that is, a program that if all
integral requirements would be relaxed is a linear program (the objective function
and the constraints are all described by linear functions). This model shall, given
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Figure 1: Example of a Sudoku problem.

a set of pre-assigned numbers, give a feasible solution to the Sudoku problem,
and if this is not possible it should give a solution that minimizes the number of
pre-assignments that cannot be fulfilled for the Sudoku problem to be solved.

Hint: Assume that the pre-assigned entries are collected in a set N whose size is n

and is of the form N = { (i, j, k) | the number k is pre-assigned to row i, column j }.

Question 6

(definitions)

a) Suppose that f : R
n → R is a given function. Define the property that f is(1p)

a strictly convex function on R
n.

b) Define the termination criterion that determines an unbounded LP solution.(1p)

c) Define the concept of an extreme point of a convex set.(1p)



EXAM
TMA947/MAN280 — APPLIED OPTIMIZATION 5

Question 7

(Lagrangian duality for equality constrained problems)

Consider the primal problem

f ∗ := infimum
x

f(x), (1a)

subject to x ∈ X, (1b)

hj(x) = 0, j = 1, . . . , `, (1c)

where f : R
n → R and hj : R

n → R (j = 1, . . . , `) are continuous functions, and
X ⊆ R

n is closed.

For an arbitrary vector λ ∈ R
`, we define the Lagrange function

L(x, λ) := f(x) +
∑̀

j=1

λjhj(x) = f(x) + λTh(x). (2)

Let
q(λ) := infimum

x∈X
L(x, λ) (3)

be the Lagrangian dual function, defined by the infimum value of the Lagrange
function over X when we have Lagrangian relaxed the explicit constraints with
multiplier values λ; the Lagrangian dual problem is to

maximize� q(λ), (4a)

subject to λ ∈ R
`. (4b)

We suppose that X is non-empty, closed and bounded so that the “infimum” can
be replaced by “minimum” in (1), (3), and both the primal and dual objective
functions in (1) and (4) attain their optimal values. Moreover, then q is finite,
continuous, and concave on the whole set R

`, so that (4) is a “well-behaved”
convex problem.

a) Let λ̄ ∈ R
`. Define a subgradient, γ̄, to q at λ̄. Also define the entire(1p)

subdifferential, ∂q(λ̄) to q at λ̄.

b) Let x(λ̄) be an optimal solution to the Lagrangian subproblem defining the(1p)
value of q(λ̄). Show that the vector h(x(λ̄)) ∈ ∂q(λ̄); that is, show that
the vector h(x(λ̄)) of constraint function values at the subproblem solution
x(λ̄) is a subgradient of q at λ̄.
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c) Show that if, for some λ∗ ∈ R
`, it holds that 0` ∈ ∂q(λ∗) then λ∗ is globally(1p)

optimal in the Lagrangian dual problem (4).

Good luck!


