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Exam instructions

When you answer the questions

Use generally valid theory and methods.

State your methodology carefully.

Only write on one page of each sheet. Do not use a red pen.

Do not answer more than one question per page.

At the end of the exam

Sort your solutions by the order of the questions.

Mark on the cover the questions you have answered.

Count the number of sheets you hand in and fill in the number on the cover.
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Question 1

(the simplex method)

Consider the following linear program:

minimize z =− x1 − x2,

subject to −x1 − 2x2 − x3 = 2,

3x1 + x2 ≤−1,

x2, x3 ≥ 0,

x1 ∈ R (free).

a) Solve this problem by using phase I and phase II of the simplex method.(2p)

[Aid: Utilize the identity

(

a b

c d

)−1

=
1

ad − bc

(

d −b

−c a

)

for producing basis inverses.]

b) Motivate using the solution from a) and the relationships between primal(1p)
and dual problems why there cannot exist a vector u = (u1, u2, u3)

T fulfill-
ing the following system of constraints:





−1 3 0
−2 1 1
2 −1 0



u =





0
0
1



 , u1 ≥ 0, u2 ≤ 0, u3 ≥ 0.

Question 2

(modelling)

Consider the mixed-integer problem (MIP) of minimizing the linear function
f(x, y) over the set X × Y , where X = {x ∈ {0, 1}n | Ax ≤ b } and Y =
{y ∈ R

m | yi ≥ 0, i = 1, . . . , m }.

a) Formulate the mixed-integer problem as one non-linear program using only(1p)
continuous variables and continuous constraints.

b) Assume that n = 1. Explain how to solve the mixed-integer problem by(2p)
solving a number of linear programs. Formulate these programs.
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Question 3

(topics in Lagrangian duality)

Consider the problem to find

f ∗ := infimum
x

f(x), (1)

subject to gi(x) ≤ 0, i = 1, . . . , m,

x ∈ X,

where f : R
n → R and gi : R

n → R, i = 1, 2, . . . , m, are given functions, and
X ⊆ R

n.

Consider also the Lagrangian dual problem to find

q∗ := supremum
�
≥0m

q(µ), (2)

where
q(µ) = infimum

x∈X
L(x, µ),

and the function L : R
n × R

m → R is defined by

L(x, µ) = f(x) +

m
∑

i=1

µigi(x).

a) Establish that the optimization problem (2) is a convex problem.(1p)

b) Suppose that all the functions f and gi, i = 1, 2, . . . , m, are continuous and(1p)
that X is nonempty, closed and bounded. Establish that the function q is
finite on R

m.

c) Take as an example f(x) := x, m = 1 and g1(x) = 1
2
x2, and X := R. What(1p)

is the optimal primal solution (if any)? What is the optimal dual solution
(if any)? Letting Γ := f ∗ − q∗ denote the “duality gap” of the problem,
what is the value of Γ in this instance?
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Question 4(3p)

(complementarity slackness theorem)

Consider the primal–dual pair of linear programs given by

maximize cTx (1)

subject to Ax ≤ b,

x ≥ 0n,

and

minimize bTy (2)

subject to ATy ≥ c,

y ≥ 0m.

Theorem 1 (Complementary Slackness Theorem) Let x be a feasible solution to
(1) and y a feasible solution to (2). Then x is optimal to (1) and y optimal to
(2) if and only if

xj(cj − yTA·j) = 0, j = 1, . . . , n, (3a)

yi(Ai·x − bi) = 0, i = 1 . . . , m, (3b)

where A·j is the jth column of A and Ai· the ith row of A.

Prove this theorem. If you wish to refer to other theorems from The Book in
your proof, then state (but do not prove) those theorems, as they apply to the
problem given.

Question 5

(quadratic programming)

a) Consider the quadratic problem:(1p)

minimize xTHx,

subject to Ax = b,
(QP)

where H ∈ R
n×n is symmetric and positive definite, A ∈ R

m×n has full
row rank, x ∈ R

n, and b ∈ R
m. Set up the KKT-conditions and find the

optimal Lagrange multipliers.
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b) The Lagrange dual problem to (QP) is also a quadratic problem. State the(1p)
(quadratic) dual problem and show that the dual solution is identical to
the Lagrange multipliers in problem a).

c) Let Z ∈ R
n×(n−m) be the null-space matrix to A in (QP), i.e., AZ =(1p)

0m×(n−m). Assume H is neither positive definite nor positive semidefinite,
but that ZTHZ is positive semidefinite. Is a local optimal solution in (QP)
a global optimal solution? Answer true or false, and motivate your answer!

Question 6(3p)

(the Frank-Wolfe algorithm)

Consider the problem

minimize 1
2
x2

1 −
1
2
(x2 − 1)2,

subject to x1 ≤ 2,

0 ≤ x2 ≤ 2,

1 − 4x1 ≤ x2 ≤ 1 + 4x1.

Start at x0 = (1, 1)T and perform one(!) complete iteration with the Frank-Wolfe
algorithm. Is the resulting vector x1 a KKT-point? Is it a local minimum? Is it
a global minimum? Motivate your answers!

Question 7

(nonlinear optimization solves interesting problems)

a) Fermat’s Last Theorem states that there are no solutions in the positive(1p)
integers of the equation

xn + yn = zn,

for n ≥ 3. Re-state this problem as a continuous nonlinear program, whose
optimal solution reveals the answer to the above question.

b) Show that for any symmetric and positive definite matrix A ∈ R
n×n there(1p)

exists a positive number c such that

xTAx ≥ c‖x‖2, x ∈ R
n.
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c) An n × n matrix A is said to be invertible if there exists for each vector(1p)
y ∈ R

n a unique vector x ∈ R
n such that Ax = y. (Then, there is a unique

n × n matrix A−1 such that A−1y = x precisely if Ax = y. The matrix
A−1 is then denoted the inverse of A.)

Show that if A is a positive definite and symmetric n×n matrix then A is
invertible.

Good luck!


