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Overview, I

Want to establish that x∗ local minimum of f over S implies
that a well-defined condition holds that we can easily check

This is possible when constraints are linear, since the set of
feasible directions then can be stated simply

With non-linear constraints things become more complicated

Constraint qualifications (CQ) are needed to make sure that
the well-defined condition is a necessary condition for local
optimality (rule out strange cases)

Under convexity, the condition turns out to also always (under
no CQ requirement) be sufficient for global optimality

Called the Karush–Kuhn–Tucker conditions

Karush: master’s student at Univ. of Chicago, 1939
Tucker/Kuhn: prof./Ph.D. student at Princeton Univ., 1951
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Overview, II

Of course, a globally optimal solution must then satisfy the
KKT conditions. But it is not practical to search for all KKT
points and pick the best. Its use is for checking that an
algorithm has found the right solution and as the basis for the
design of algorithms

Compare checking for every x with f ′(x) = 0 in R!

The user has all the responsibility!

Logic: x∗ local optimal AND a CQ holds =⇒ KKT holds at
x∗

Equivalent: KKT does not hold at x∗ =⇒ x∗ is not a local
optimal OR no CQ holds

CQ important because if it holds then if we are not at a KKT
point then we know we are not locally optimal!
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Cautions needed! I

Costly errors can be made if one ignores that KKT conditions
are necessary, but not always sufficient

US Air Force’s B-2 Stealth bomber program: Reaganism,
1980s

Design variables: various dimensions, distribution of volume
between wing and fuselage, flying speed, thrust, fuel
consumption, drag, lift, air density, etc

Objective: maximum range on full tank

Model from the 1940s which had produced B-29, B-52, etc

Solution to the KKT conditions found; specified design
variable values that put almost all of the total volume in the
wing, leading to the flying wing design for the B-2 bomber

Billions of dollars later, found the design solution works, but
its range too low in comparison with other bomber designs
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Nice photos, I
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Nice photos, II
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Cautions needed! II

Review carried out. The model is correct!

But ... The model was a nonconvex NLP; the review revealed
a second solution to the KKT system

Much less wing volume! Looks like an airplane! Maximizes
range!

In other words, the design implemented was the
aerodynamically worst possible choice of configuration,
leading to a very costly error

Still flies. Why? Happens that it has good properties wrt.
radar protection (stealth) ...
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Overview, cont’d, I

The condition must not only be easy to check, it should also
state something useful

It is easy to state some condition: If x∗ is a local minimum of
f over S then it is also feasible

Completely useless, since it is satisfied for every feasible point

That is what we end up with if we want something that is
applicable to every problem. We need to get rid of some weird
problems, and that is a main reason for introducing the CQs
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Overview, cont’d, II

We begin by studying an abstract problem and provide a
geometric optimality condition

Next, we state the corresponding result for an explicit
representation of S in terms of constraints. This is the Fritz
John condition

Introducing a CQ we then obtain the Karush–Kuhn–Tucker
conditions

There is more than one CQ, some more useful than others in
particular cases

Linear independence of the equality constraints is the classic
one from the Lagrange multiplier rule. We extend it and show
others

Michael Patriksson Lectures 5 & 6: Primal–dual optimality conditions



Introduction Geometric conditions Fritz John KKT

Geometric optimality conditions, I

Problem:
minimize f (x),

subject to x ∈ S ,
(1)

S ⊂ R
n nonempty, closed; f : R

n → R in C 1

Idea: at a local minimum x∗ of f over S it is impossible to
draw a curve from x∗ such that it is feasible and f decreases
along it

Cannot work with f itself; descent is measured in terms of
directional derivatives. Linearize f

We must also “linearize” S . Reason: the cone of feasible
directions may be too small to be useful; also, it is difficult to
state it explicitly. We replace the cone of feasible directions
with the tangent cone to S at x∗
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Geometric optimality conditions, II

The cone of feasible directions for S at x ∈ R
n is

RS(x) := {p ∈ R
n | ∃ δ̃ > 0 such that x + δp ∈ S , 0 ≤ δ ≤ δ̃ }

The tangent cone for S at x ∈ R
n is

TS(x) := {p ∈ R
n | ∃ {xk} ⊂ S , {λk} ⊂ (0,∞) : lim

k→∞

xk = x,

lim
k→∞

λk(xk − x) = p }

TS(x) is closed; the set of tangents to sequences {xk} ⊂ S

It holds that cl RS(x) ⊂ TS (x) for every x ∈ R
n
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Geometric optimality conditions, III

Suppose that for functions gi ∈ C 1, i = 1, . . . ,m:

S := { x ∈ R
n | gi (x) ≤ 0, i = 1, . . . ,m }

Two further cones:

G (x) := {p ∈ R
n | ∇gi(x)

Tp ≤ 0, i ∈ I(x) },

and

◦

G(x) := {p ∈ R
n | ∇gi(x)

Tp < 0, i ∈ I(x) }

For every x ∈ R
n it holds that

◦

G(x) ⊂ RS(x), and
TS(x) ⊂ G (x)

So, for every x ∈ R
n,

◦

G (x) ⊂ RS(x) ⊂ clRS(x) ⊂ TS(x) ⊂ G (x)
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Example I

S = { x ∈ R
2 | −x1 ≤ 0, (x1 − 1)2 + x2

2 ≤ 1 }
RS(02) = {p ∈ R

2 | p1 > 0 }
TS(02) = {p ∈ R

2 | p1 ≥ 0 }
TS(02) = clRS(02)

1 2

1

−1

S
1 2

1

−1

S TS(02)
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Example II

S = { x ∈ R
2 | −x3

1 + x2 ≤ 0, x5
1 − x2 ≤ 0,−x2 ≤ 0 }

RS(02) = ∅

TS(02) = {p ∈ R
2 | p1 ≥ 0, p2 = 0 }

1

1

1

1

S TS(02)
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A geometric necessary optimality condition

◦

F (x∗) := {p ∈ R
n | ∇f (x∗)Tp < 0 }

[Check that for convex problems with a differentiable objective

function f , the existence of feasible directions in
◦

F (x∗) is
equivalent to the non-optimality of x∗]

Consider the problem (1). If x∗ ∈ S is a local minimum of f

over S then
◦

F (x∗) ∩ TS(x∗) = ∅

This is an elegant criterion for checking whether a given point
is a candidate for a local minimum. There is a catch though:

The set TS(x∗) is nearly impossible to compute in general!

We will compute other cones that we hope will approximate
TS(x∗) well enough

Specifically, we will use the cone G (x)

Note: since TS (x) ⊂ G (x) holds, we may rule out some
interesting cases from consideration!
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Example problems

Consider the differentiable (linear) function f : R
2 → R

defined by f (x) = x1

Then, ∇f = (1, 0)T, and
◦

F (02) = {p ∈ R
2 | p1 < 0 }

x∗ = 02 is a local (in fact, even global) minimum in
problem (1) with S given by either one of Examples I–II above
(two more in the book)

Easy to check that the geometric necessary optimality

condition
◦

F (02) ∩ TS(02) = ∅ is satisfied in all examples (no
surprise, in view of the above geometric theorem)
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The Fritz John conditions

If x∗ ∈ S is a local minimum of f over S then there exist
multipliers µ0 ∈ R, µ ∈ R

m such that

µ0∇f (x∗) +

m∑

i=1

µi∇gi(x
∗) = 0n, (2a)

µigi (x
∗) = 0, i = 1, . . . ,m, (2b)

µ0, µi ≥ 0, i = 1, . . . ,m, (2c)

(µ0,µ
T)T 6= 0m+1 (2d)

Proof: the geometric necessary conditions and Farkas’ Lemma

What’s bad about the Fritz John conditions? It may be
possible to fulfill (2) at every feasible point by setting µ0 = 0!
Then, f plays no role (bad!). We will describe conditions
(“constraint qualifications) which ensure that µ0 > 0

Michael Patriksson Lectures 5 & 6: Primal–dual optimality conditions



Introduction Geometric conditions Fritz John KKT

Comments

The vector µ ∈ R
m is a vector of Lagrange multipliers. Each

of them is associated with a constraint, and will be shown to
be a measure of the sensitivity of the solution to changes in
the constraints

Conditions (2a), (2c) are known as the dual feasibility
conditions

Condition (2b) is the complementarity condition. States that
for inactive constraints i 6∈ I(x∗), µi = 0 must hold

Will take a closer look at the Examples I–II, but wait until the
KKT conditions have been developed

We do this by introducing conditions that bring either
◦

G (x) or
G (x) to be tight enough approximations of TS(x)
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The Karush–Kuhn–Tucker conditions

Abadie’s CQ: At x ∈ S Abadie’s constraint qualification holds
if G (x) = TS(x)

Satisfied in Example I only

Assume that at x∗ ∈ S Abadie’s CQ holds. If x∗ ∈ S is a local
minimum of f over S then there exists µ ∈ R

m such that

∇f (x∗) +

m∑

i=1

µi∇gi (x
∗) = 0n, (3a)

µigi (x
∗) = 0, i = 1, . . . ,m, (3b)

µ ≥ 0m (3c)

Proof by first noting that
◦

F (x∗) ∩ TS(x∗) = ∅, which due to

our CQ implies that
◦

F (x∗) ∩ G (x∗) = ∅. Rest of the proof by
Farkas’ Lemma. [Note: case of m = 0!]

Michael Patriksson Lectures 5 & 6: Primal–dual optimality conditions



Introduction Geometric conditions Fritz John KKT

Comments on the KKT conditions

The statement in (3a) is that x∗ is a stationary point to the
Lagrangian function x 7→ f (x) +

∑m
i=1

µigi (x)
The condition (3) is that −∇f (x∗) ∈ NS (x∗) holds. The
normal cone NS (x∗) is spanned by the normals ∇gi (x

∗) of the
active constraints
Interpretation: (4) is a force equilibrium condition

−∇f (x∗) is a force to violate the active constraints
The remaining terms equal this force. µi ≥ 0 must hold for
active constraints (a force towards feasibility)

x)∆

1g =0

3g =0

(x)f∆−

g1(x)∆

2g =0

x

g2(

S
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Example I

Abadie’s CQ is fulfilled, therefore the KKT-system is solvable
Indeed, the system





(
1
0

)
+

(
−1 −2
0 0

)
µ = 02,

µ ≥ 02,

possesses solutions µ = (µ1, 2
−1(1 − µ1))

T for every
0 ≤ µ1 ≤ 1. Therefore, there are infinitely many multipliers,
that all belong to a bounded set

Case of a non-unique dual solution µ
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Equality constraints

Additional constraints hj(x) = 0, j = 1, . . . , ℓ

Corresponding expanded KKT system:

∇f (x∗) +
m∑

i=1

µi∇gi(x
∗) +

ℓ∑

j=1

λj∇hj(x
∗) = 0n, (4a)

µigi (x
∗) = 0, i = 1, . . . ,m,

(4b)

µ ≥ 0m (4c)

µi ≥ 0 for the ≤-constraints; λj is sign free for =-constraints
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Other constraint qualifications

Slater CQ—convex sets with interior points: The feasible set
is convex, and there exists a feasible point such that every
inequality constraint is satisfied strictly

Linear independence CQ (LICQ): The gradients of all the
active constraints are linearly independent

Linear constraints CQ: All the constraints are affine/linear

Mangasarian–Fromowitz CQ (MFCQ): The gradients of all
the functions hj are linearly independent, and the set
◦

G (x) ∩ H(x) is nonempty, where

H(x) := {p ∈ R
n | ∇hi(x)

Tp = 0, i = 1, . . . , ℓ }

Some CQs stronger than others: Slater CQ or LICQ =⇒
MFCQ =⇒ Abadie’s CQ; linear constraints CQ =⇒
Abadie’s CQ
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Convexity implies sufficiency

As for the case of unconstrained optimization and convex
constrained optimization, stationarity implies global optimality
for convex problems:

Assume the problem (1) is convex, that is, f as well as gi ,
i = 1, . . . ,m, are convex, and hj , j = 1, . . . , ℓ, are affine; also,
all functions are in C 1. Assume further that for x∗ ∈ S the
KKT conditions (4) are satisfied. Then, x∗ is a globally

optimal solution to the problem (1)

Proof.

Check interesting applications in the book on the
characterization of eigenvalues and eigenvectors!
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