TMA947/MAN280
 OPTIMIZATION, BASIC COURSE

Date: 12-08-30
Examiner: Michael Patriksson

Question 1

(the simplex method)
$\mathbf{(2 p)}$ a) We first rewrite the problem on standard form. We multiply the objective and first constraint by -1 and introduce slack variables s_{1} and s_{2}.

$$
\begin{aligned}
& \text { minimize } \quad z=-x_{1}-2 x_{2} \\
& \text { subject to } \quad-x_{1}+3 x_{2}+s_{1} \quad=6 \\
& x_{1} \quad+x_{2} \quad+s_{2}=1 \\
& x_{1}, \quad x_{2}, \quad s_{1}, \quad s_{2} \geq 0 \text {. }
\end{aligned}
$$

By choosing $\left(s_{1}, s_{2}\right)$ as basic variables, we obtain a BFS with $B=I$, hence we can begin with phase II.

Calculating the vector of reduced costs for the non-basic variables x_{1}, x_{2} yields $(-1,-2)^{\mathrm{T}}$. Least reduced cost implies that x_{2} is the entering variable. The minimum ratio test shows that s_{1} should leave the basis. We have the basic variables $\left(x_{2}, s_{2}\right)$. The vector of reduced costs for the non-basic variables x_{1} and s_{1} is $(-5 / 3,2 / 3)^{\mathrm{T}}$. Hence x_{1} enters the basis. The minimum ratio test implies that s_{2} leaves the basis. We now have x_{1}, x_{2} as basic variables. The vector of reduced costs for the non-basic variables s_{1}, s_{2} is $(3 / 2,5 / 2)^{\mathrm{T}}$. Since the reduced costs are all non-negative, the current BFS is optimal. We obtain $\left(x_{1}, x_{2}\right)^{\mathrm{T}}=B^{-1} b=(9 / 2,7 / 2)^{\mathrm{T}}$ as the optimal solution and 23 as the optimal solution value for the original problem (-23 for the problem in standard form).
$(\mathbf{1 p}) \quad$ b) In the optimal BFS, all the reduced costs are strictly greater than zero. Hence the optimal solution is unique.

(3p) Question 2

(Newton's method)
The search direction for Newton's method is defined by solving the linear system

$$
\begin{equation*}
\nabla^{2} f\left(\boldsymbol{x}_{k}\right) \boldsymbol{p}_{k+1}=-\nabla f\left(\boldsymbol{x}_{k}\right) \tag{1}
\end{equation*}
$$

In our case we have

$$
\nabla f=\left(3(x-1)^{2}, 2 y\right)
$$

and

$$
\nabla^{2} f=\left(\begin{array}{cc}
6(x-1) & 0 \\
0 & 2
\end{array}\right)
$$

Solving the linear system (1) for $x_{k} \neq 1$ we obtain

$$
\boldsymbol{p}_{k+1}=-\left(\frac{x_{k}-1}{2}, y_{k}\right) .
$$

Newton's method with unit step yields

$$
\boldsymbol{x}_{k+1}=\boldsymbol{x}_{k}+\boldsymbol{p}_{k+1}=\left(\frac{x_{k}+1}{2}, 0\right) .
$$

We will now use induction to prove that

$$
\begin{equation*}
\left(x_{k}, y_{k}\right)=\left(1+\frac{1}{2^{k}}\left(x_{0}-1\right), 0\right) \tag{2}
\end{equation*}
$$

We first prove (2) for the case $k:=1$.

$$
\left(x_{1}, y_{1}\right)=\left(\frac{x_{0}+1}{2}, 0\right)=\left(1+\frac{x_{0}-1}{2}, 0\right) .
$$

We now assume that (2) holds for the case $k:=n$, and prove that it then holds for $k:=n+1$.

$$
\begin{aligned}
\left(x_{n+1}, y_{n+1}\right) & =\left(\frac{x_{n}+1}{2}, 0\right) \\
& =\left(\frac{1}{2}+\frac{1}{2}\left(1+\frac{1}{2^{n}}\left(x_{0}-1\right)\right), 0\right) \\
& =\left(1+\frac{1}{2^{n+1}}\left(x_{0}-1\right), 0\right) .
\end{aligned}
$$

Thus we have shown that (2) holds for all $k \in \mathbb{N}$.
Newton's method converges to the point $(1,0)$ which is neither a global nor a local optimum since $-\epsilon^{3}=f(1-\epsilon, 0)<f(1,0)=0$ for all $\epsilon>0$. This contradicts the definition of local optimality.

Question 3

(sufficient global optimality conditions)

(1p) a) This is Theorem 4.3.
$(\mathbf{2 p}) \quad$ b) This is Theorem 5.45.

Question 4

(convexity)
$(\mathbf{1 p})$ a) The claim is true. Clearly, x_{1}^{4} is a convex function, and since we know that a sum of convex functions remains convex, what is left to check is if $x_{2}^{2}+4 x_{2} x_{3}+5 x_{3}^{2}:=g\left(x_{2}, x_{3}\right)$ is convex. A computation of the eigenvalues to the hessian of g shows that they are $\lambda=6 \pm \sqrt{32}>0$. Therefore, the hessian is positive semidefinite for all $\boldsymbol{x} \in \mathbb{R}^{3}$ and thus, g is convex. We conclude that f is convex.
$(\mathbf{1 p}) \quad$ b) The claim is true. Let $h(\boldsymbol{x}):=2 x_{1}-x_{2}$ and $g(\boldsymbol{x}):=x_{2}^{2}$ and observe that they are both convex. f is not differentiable so we cannot use the same procedure as in a); instead we use the definition. Let \boldsymbol{x}^{1} and \boldsymbol{x}^{2} be two arbitrary points and let $\lambda \in(0,1)$. Since h and g are convex, we have that

$$
\begin{aligned}
h\left(\lambda \boldsymbol{x}^{1}+(1-\lambda) \boldsymbol{x}^{2}\right) & \leq \lambda h\left(\boldsymbol{x}^{1}\right)+(1-\lambda) h\left(\boldsymbol{x}^{2}\right) \text { and } \\
g\left(\lambda \boldsymbol{x}^{1}+(1-\lambda) \boldsymbol{x}^{2}\right) & \leq \lambda g\left(\boldsymbol{x}^{1}\right)+(1-\lambda) g\left(\boldsymbol{x}^{2}\right) .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& f\left(\lambda \boldsymbol{x}^{1}+(1-\lambda) \boldsymbol{x}^{2}\right)=\max \left\{h\left(\lambda \boldsymbol{x}^{1}+(1-\lambda) \boldsymbol{x}^{2}\right), g\left(\lambda \boldsymbol{x}^{1}+(1-\lambda) \boldsymbol{x}^{2}\right)\right\} \leq \\
& \max \left\{\lambda h\left(\boldsymbol{x}^{1}\right)+(1-\lambda) h\left(\boldsymbol{x}^{2}\right), \lambda g\left(\boldsymbol{x}^{1}\right)+(1-\lambda) g\left(\boldsymbol{x}^{2}\right)\right\} \leq \\
& \max \left\{\lambda h\left(\boldsymbol{x}^{1}\right), \lambda g\left(\boldsymbol{x}^{1}\right)\right\}+\max \left\{(1-\lambda) h\left(\boldsymbol{x}^{2}\right),(1-\lambda) g\left(\boldsymbol{x}^{2}\right)\right\}= \\
& \lambda f\left(\boldsymbol{x}^{1}\right)+(1-\lambda) f\left(\boldsymbol{x}^{2}\right),
\end{aligned}
$$

where the last inequality comes from the obvious fact that

$$
\max \{a+b, c+d\} \leq \max \{a, c\}+\max \{b, d\}
$$

$\mathbf{(1 p)}$ c) The claim is false. The hessian to f is given by

$$
\nabla^{2} f(\boldsymbol{x})=\left(\begin{array}{cc}
12 x_{1}+2 x_{2}^{2} & 4 x_{1} x_{2} \\
4 x_{1} x_{2} & 12 x_{2}^{2}+8
\end{array}\right)
$$

and we conclude that its eigenvalues at $\boldsymbol{x}=(0,0)^{\mathrm{T}}$ are $\lambda_{1}=8$ and $\lambda_{2}=0$, i.e., the matrix is positive semidefinite but not positive definite. Therefore
we cannot conclude anything about the local convexity from this fact. But now look at the line given by

$$
\left\{\begin{array}{l}
x_{1}=t \\
x_{2}=0
\end{array} \quad \text { and let } \boldsymbol{x}^{1}=\binom{\varepsilon}{0}, \boldsymbol{x}^{2}=\binom{-\varepsilon}{0} .\right.
$$

We have $f\left(\boldsymbol{x}^{1}\right)=2 \varepsilon^{3}, f\left(\boldsymbol{x}^{2}\right)=-2 \varepsilon^{3}$ and $f\left(\lambda \boldsymbol{x}^{1}+(1-\lambda) \boldsymbol{x}^{2}\right)=2 \varepsilon^{3}(2 \lambda-1)^{3}$. Therefore, we get that $f\left(\lambda \boldsymbol{x}^{1}+(1-\lambda) \boldsymbol{x}^{2}\right)>\lambda f\left(\boldsymbol{x}^{1}\right)+(1-\lambda) f\left(\boldsymbol{x}^{2}\right)$ when $(2 \lambda-1)^{3}>2 \lambda-1$ which is true for all $\lambda<1 / 2$. This counter-example shows that f is not locally convex around the origin.

(3p) Question 5

(linear programs)

The set in question is described by primal-dual feasibility, and the inverse of weak duality. As the first two parts of the constraints describe weak duality, in total the system describes strong duality:

$$
\begin{aligned}
\boldsymbol{A} \boldsymbol{x} & \geq \boldsymbol{b}, \\
\boldsymbol{x} & \geq \mathbf{0}^{n}, \\
\boldsymbol{A}^{\mathrm{T}} \boldsymbol{y} & \leq \boldsymbol{c}, \\
\boldsymbol{y} & \geq \mathbf{0}^{m}, \\
\boldsymbol{c}^{\mathrm{T}} \boldsymbol{x} & \leq \boldsymbol{b}^{\mathrm{T}} \boldsymbol{y}
\end{aligned}
$$

(3p) Question 6

modelling

Let $x_{i j}$ be the flow sent through edge $(i, j) \in E$. Introduce an auxiliary variable $y_{i j}$ for each edge $(i, j) \in E$, which is the cost associated with edge $(i, j) \in E$.

Then the problem can be formulated as

$$
\operatorname{minimize} \sum_{(i, j) \in E} y_{i j},
$$

subject to $\quad y_{i j} \geq m_{i j}^{l}+k_{i j}^{l} x_{i j}, \quad(i, j) \in E, l=1, \ldots, n$,

$$
\begin{aligned}
\sum_{j:(i, j) \in E} x_{i j} & =\sum_{j:(j, i) \in E} x_{j i}, \quad i \in V \backslash\{s, t\}, \\
\sum_{j:(s, j) \in E} x_{s j} & =d \\
\sum_{j:(j, t) \in E} x_{j t} & =d, \\
0 \leq x_{i j} & \leq c_{i j},
\end{aligned} \quad(i, j) \in E . \quad .
$$

(3p) Question 7

Lagrangian duality

a) Lagrangian relaxing the constraint yields the Lagrangian function $\mathcal{L}(\boldsymbol{x}, \mu)=$ $x_{1}^{2}-4 x_{1}+2 x_{2}^{2}+\mu\left(2 x_{1}+x_{2}-2\right)$. From the stationary conditions for the Lagrangian, we get that

$$
x_{1}(\mu)=\left\{\begin{aligned}
2-\mu, & 0 \leq \mu \leq 2, \quad x_{2}(\mu)=0, \mu \geq 0 . \\
0, & \mu \geq 2
\end{aligned}\right.
$$

We then get the following expression for the Lagrangian dual function, to be maximized over $\mu \geq 0$.

$$
q(\mu)=\left\{\begin{aligned}
-\mu^{2}+2 \mu-4, & 0 \leq \mu \leq 2 \\
-2 \mu, & \mu \geq 2
\end{aligned}\right.
$$

Calculating the derivative of q, we get

$$
q^{\prime}(\mu)=\left\{\begin{array}{cl}
-2 \mu+2, & 0 \leq \mu \leq 2 \\
-2, & \mu \geq 2
\end{array}\right.
$$

It is clear that q is concave and differential for every $\mu \geq 0$. It is in fact strictly concave.
b) Setting $q^{\prime}(\mu)=0$ as a first guess, we obtain $q^{\prime}(\mu)=0$ for $\mu=1$. Since the dual problem is convex this is the optimal solution, i.e., $\mu^{*}=1$, with objective value $q\left(\mu^{*}\right)=-3$.
c) The Lagrangian optimal solution in \boldsymbol{x} for $\mu=\mu^{*}$ is, from a), $\boldsymbol{x}=(1,0)^{\mathrm{T}} \cdot \boldsymbol{x}$ is feasible and $f(\boldsymbol{x})=q\left(\mu^{*}\right)$, so by weak duality, \boldsymbol{x} is an optimal solution. According to duality theory for convex problems over polyhedral sets, all primal optimal solutions are generated from Lagrangian optimal solutions given an optimal dual vector. Since $\boldsymbol{x}\left(\mu^{*}\right)$ here is the unique vector $\boldsymbol{x}=$ $(1,0)^{\mathrm{T}}$ this must also be the unique optimal solution to the primal problem.

