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Question 1

(the simplex method)

a) We first rewrite the problem on standard form. We rewrite x2 = x+
2 − x−

2(2p)
and introduce slack variables s1 and s2.

minimize x1 − 2x+
2 + 2x−

2

subject to − x1 + x+
2 − x−

2 + s1 = 1,

2x1 + x+
2 − x−

2 + s2 = 4,

x1, x
+
2 , x−

2 , s1, s2 ≥ 0.

Phase I

If we start with basis (s1, s2), we have a unit basis matrix, and the right-
hand side then is (1, 4)T ≥ (0, 0)T, which is therefore a basic feasible solu-
tion.

Phase II

Calculating the reduced costs, we obtain c̃N = (1,−2, 2)T , meaning that
x+

2 should enter the basis. From the minimum ratio test, we get that the
outgoing variable is s1. Updating the basis we now have (x+

2 , s1) in the
basis.

Calculating the reduced costs, we obtain c̃N = (−1, 0, 2)T , meaning that x1

should enter the basis. From the minimum ratio test, we get that the only
eligible outgoing variable is s2. Updating the basis we now have (x1, x

+
2 ) in

the basis.

Calculating the reduced costs, we obtain c̃N ≥ 0, meaning that the cur-
rent basis is optimal. The optimal solution is thus (x1, x

+
2 , x−

2 , s1, s2)
T =

(1, 2, 0, 0, 0)T, which in the original variables means (x1, x2) = (1, 2)T, with
optimal objective value f ∗ = −3.

b) We have that the optimal dual variables are cT
BB−1 = −1

3
(5, 1)T. So a(1p)

ε > 0 change in the first constraint would mean that the optimal objective
value would change to f ∗ = −3 − 5

3
ε.
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Question 2

(descent methods in unconstrained optimization)

a) Assuming that the optimal step length is positive—otherwise the algorithm(1p)
would have stopped in the search direction phase with the verdict that the
gradient of f at xk is zero—the optimality conditions for the problem to
minimize f(xk + ℓpK) with respect to ℓ ≥ is simply that the derivative of
f(xk + ℓpk) with respect to ℓ ≥ is zero. With xk+1 := xk + ℓpk this is
expressed precisely as ∇f(xk+1)

Tpk = 0.

b) At x ∈ R
2, the gradient of f equals(2p)

(

−400x1(x2 − x2
1) + 2(x1 − 1)

200(x2 − x2
1)

)

.

Hence, the Hessian of f at x ∈ R
2 equals

(

100(12x2
1 − 4x2) + 2 −400x1

−400x1 200

)

.

At x∗ = (1, 1)T, then, ∇f(x∗) = (0, 0)T, and

∇2f(x∗) =

(

802 −400
−400 200

)

.

The eigenvalues of ∇2f(x∗) are both positive; hence, ∇2f(x∗) is positive
definite.

Investigating the eigenvalues of ∇2f(x) we arrive at the conclusion that
the Hessian matrix is singular when x2

1 − 2x2 = 0.005 and positive definite
when x2

1 − x2 > 0.005.

Question 3(3p)

(separation and projection)

Let ẑ = projS(z). Then,

‖z − x‖2 = ‖z − ẑ + ẑ − x‖2

= ‖z − ẑ‖2 + ‖ẑ − x‖2 + 2(z − ẑ)T(ẑ − x).
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But the hyperplane (z − ẑ)T(ẑ − x) is a hyperplane separating z from S, i.e.
(z − ẑ)T(ẑ − y) ≥ 0 for all y ∈ S. In particular, (z − ẑ)T(ẑ − x) ≥ 0. Since
‖z − ẑ‖2 ≥, we find that

‖z − x‖2 = ‖z − ẑ‖2 + ‖ẑ − x‖2 + 2(z − ẑ)T(ẑ − x) ≥ ‖ẑ − x‖2.

Question 4

(true or false claims in optimization)

a) True.(1p)

Motivation: The problem setting is such that we may convert the problem
to an unconstrained optimization problem over a subspace of R

n; the local
optimality conditions then imply, in fact, that the objective function is
convex, whence the local minimum is a global one.

b) False.(1p)

Motivation: The case of f(x) := x3 at x = 0 serves as an example. The
direction p = −1 is a direction of descent with respect to f at x = 0, yet
f ′(x) = 0.

c) False.(1p)

Motivation: The case of maximizing x1 subject to x1 ≥ 0 is a simple LP
example where there exist feasible solutions, but no optimal solution.

Question 5(3p)

(sufficiency of the KKT conditions under convexity)

This is Theorem 5.45 in The Book.

Question 6

(Lagrangian duality)

a) Denote the Lagrangian dual function with respect to relaxation of both(2p)
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constraints as q(µ). We have that q(0) = minx1,x2
(x1 − 2)2 + (x2 − 1)4 =

0. Further we have that x = [−3,−1]T is feasible with respect to the
constraints, with objective value f(x) = 41. Thus, by weak Lagrangian
duality, the optimal value f ∗ lies in the interval [0, 41].

b) The problem is clearly convex, and the point x = [−3,−1]T is strictly(1p)
feasible. Thus the Slater CQ holds, so strong Lagrangian duality must
hold.

Question 7(3p)

(modelling)

The decision variables in the model are k1, k2, k3. In order to formulate a linear
program, we introduce the following auxiliary variables:

si = the error of the velocity at point i = 1, . . . , n,

hi = the error of the acceleration at point i = 1, . . . , n.

We have that v′(t) = k2 cos(t) − k3 sin(t). The model can then be formulated as
that to

minimize
n
∑

i=1

(si + hi) ,

subject to yi − (k1 + k2 sin(ti) + k3 cos(ti)) ≤ si, i = 1, . . . , n,

yi − (k1 + k2 sin(ti) + k3 cos(ti)) ≥ −si, i = 1, . . . , n,

ai − (k2 cos(ti) − k3 sin(ti)) ≤ hi, i = 1, . . . , n,

ai − (k2 cos(ti) − k3 sin(ti)) ≥ −hi, i = 1, . . . , n,

si, hi ≥ 0, i = 1, . . . , n.

k1, k2, k3 ∈ R.


