EXAM SOLUTION

TMA947/MAN280 OPTIMIZATION, BASIC COURSE

Date:13-04-02Examiner:Michael Patriksson

Question 1

(the simplex method)

- (2p) a) We first rewrite the problem on standard form. We rewrite $x_2 = x_2^+ x_2^$ and introduce slack variables s_1 and s_2 .
 - minimize $x_1 2x_2^+ + 2x_2^$ subject to $-x_1 + x_2^+ - x_2^- + s_1 = 1$, $2x_1 + x_2^+ - x_2^- + s_2 = 4$, $x_1, x_2^+, x_2^-, s_1, s_2 \ge 0$.

Phase I

If we start with basis (s_1, s_2) , we have a unit basis matrix, and the righthand side then is $(1, 4)^T \ge (0, 0)^T$, which is therefore a basic feasible solution.

Phase II

Calculating the reduced costs, we obtain $\tilde{\boldsymbol{c}}_N = (1, -2, 2)^T$, meaning that x_2^+ should enter the basis. From the minimum ratio test, we get that the outgoing variable is s_1 . Updating the basis we now have (x_2^+, s_1) in the basis.

Calculating the reduced costs, we obtain $\tilde{\boldsymbol{c}}_N = (-1, 0, 2)^T$, meaning that x_1 should enter the basis. From the minimum ratio test, we get that the only eligible outgoing variable is s_2 . Updating the basis we now have (x_1, x_2^+) in the basis.

Calculating the reduced costs, we obtain $\tilde{c}_N \geq 0$, meaning that the current basis is optimal. The optimal solution is thus $(x_1, x_2^+, x_2^-, s_1, s_2)^T = (1, 2, 0, 0, 0)^T$, which in the original variables means $(x_1, x_2) = (1, 2)^T$, with optimal objective value $f^* = -3$.

(1p) b) We have that the optimal dual variables are $\boldsymbol{c}_B^{\mathrm{T}} \boldsymbol{B}^{-1} = -\frac{1}{3}(5,1)^{\mathrm{T}}$. So a $\varepsilon > 0$ change in the first constraint would mean that the optimal objective value would change to $f^* = -3 - \frac{5}{3}\varepsilon$.

Question 2

(descent methods in unconstrained optimization)

- (1p) a) Assuming that the optimal step length is positive—otherwise the algorithm would have stopped in the search direction phase with the verdict that the gradient of f at \boldsymbol{x}_k is zero—the optimality conditions for the problem to minimize $f(\boldsymbol{x}_k + \ell \boldsymbol{p}_k)$ with respect to $\ell \geq$ is simply that the derivative of $f(\boldsymbol{x}_k + \ell \boldsymbol{p}_k)$ with respect to $\ell \geq$ is zero. With $\boldsymbol{x}_{k+1} := \boldsymbol{x}_k + \ell \boldsymbol{p}_k$ this is expressed precisely as $\nabla f(\boldsymbol{x}_{k+1})^T \boldsymbol{p}_k = 0$.
- (2p) b) At $x \in \mathbb{R}^2$, the gradient of f equals

$$\begin{pmatrix} -400x_1(x_2 - x_1^2) + 2(x_1 - 1) \\ 200(x_2 - x_1^2) \end{pmatrix}.$$

Hence, the Hessian of f at $\boldsymbol{x} \in \mathbb{R}^2$ equals

$$\begin{pmatrix} 100(12x_1^2 - 4x_2) + 2 & -400x_1 \\ -400x_1 & 200 \end{pmatrix}.$$

At $\boldsymbol{x}^* = (1, 1)^{\mathrm{T}}$, then, $\nabla f(\boldsymbol{x}^*) = (0, 0)^{\mathrm{T}}$, and

$$abla^2 f(\boldsymbol{x}^*) = \begin{pmatrix} 802 & -400 \\ -400 & 200 \end{pmatrix}.$$

The eigenvalues of $\nabla^2 f(\boldsymbol{x}^*)$ are both positive; hence, $\nabla^2 f(\boldsymbol{x}^*)$ is positive definite.

Investigating the eigenvalues of $\nabla^2 f(\boldsymbol{x})$ we arrive at the conclusion that the Hessian matrix is singular when $x_1^2 - 2x_2 = 0.005$ and positive definite when $x_1^2 - x_2 > 0.005$.

(3p) Question 3

(separation and projection)

Let $\hat{\boldsymbol{z}} = \text{proj}_{S}(\boldsymbol{z})$. Then,

$$\begin{aligned} \|\boldsymbol{z} - \boldsymbol{x}\|^2 &= \|\boldsymbol{z} - \hat{\boldsymbol{z}} + \hat{\boldsymbol{z}} - \boldsymbol{x}\|^2 \\ &= \|\boldsymbol{z} - \hat{\boldsymbol{z}}\|^2 + \|\hat{\boldsymbol{z}} - \boldsymbol{x}\|^2 + 2(\boldsymbol{z} - \hat{\boldsymbol{z}})^{\mathrm{T}}(\hat{\boldsymbol{z}} - \boldsymbol{x}). \end{aligned}$$

But the hyperplane $(\boldsymbol{z} - \hat{\boldsymbol{z}})^{\mathrm{T}}(\hat{\boldsymbol{z}} - \boldsymbol{x})$ is a hyperplane separating \boldsymbol{z} from S, i.e. $(\boldsymbol{z} - \hat{\boldsymbol{z}})^{\mathrm{T}}(\hat{\boldsymbol{z}} - \boldsymbol{y}) \geq 0$ for all $\boldsymbol{y} \in S$. In particular, $(\boldsymbol{z} - \hat{\boldsymbol{z}})^{\mathrm{T}}(\hat{\boldsymbol{z}} - \boldsymbol{x}) \geq 0$. Since $\|\boldsymbol{z} - \hat{\boldsymbol{z}}\|^2 \geq$, we find that

$$\|m{z} - m{x}\|^2 = \|m{z} - \hat{m{z}}\|^2 + \|\hat{m{z}} - m{x}\|^2 + 2(m{z} - \hat{m{z}})^{\mathrm{T}}(\hat{m{z}} - m{x}) \ge \|\hat{m{z}} - m{x}\|^2.$$

Question 4

(true or false claims in optimization)

(1p) a) True.

Motivation: The problem setting is such that we may convert the problem to an unconstrained optimization problem over a subspace of \mathbb{R}^n ; the local optimality conditions then imply, in fact, that the objective function is convex, whence the local minimum is a global one.

(1p) b) False.

Motivation: The case of $f(x) := x^3$ at x = 0 serves as an example. The direction p = -1 is a direction of descent with respect to f at x = 0, yet f'(x) = 0.

(1p) c) False.

Motivation: The case of maximizing x_1 subject to $x_1 \ge 0$ is a simple LP example where there exist feasible solutions, but no optimal solution.

(3p) Question 5

(sufficiency of the KKT conditions under convexity)

This is Theorem 5.45 in The Book.

Question 6

(Lagrangian duality)

(2p) a) Denote the Lagrangian dual function with respect to relaxation of both

constraints as $q(\boldsymbol{\mu})$. We have that $q(\mathbf{0}) = \min_{x_1,x_2}(x_1-2)^2 + (x_2-1)^4 = 0$. Further we have that $\boldsymbol{x} = [-3,-1]^{\mathrm{T}}$ is feasible with respect to the constraints, with objective value $f(\boldsymbol{x}) = 41$. Thus, by weak Lagrangian duality, the optimal value f^* lies in the interval [0,41].

(1p) b) The problem is clearly convex, and the point $\boldsymbol{x} = [-3, -1]^{\mathrm{T}}$ is strictly feasible. Thus the Slater CQ holds, so strong Lagrangian duality must hold.

(3p) Question 7

(modelling)

The decision variables in the model are k_1, k_2, k_3 . In order to formulate a linear program, we introduce the following auxiliary variables:

 s_i = the error of the velocity at point i = 1, ..., n, h_i = the error of the acceleration at point i = 1, ..., n.

We have that $v'(t) = k_2 \cos(t) - k_3 \sin(t)$. The model can then be formulated as that to

minimize
$$\sum_{i=1}^{n} (s_i + h_i),$$

subject to $y_i - (k_1 + k_2 \sin(t_i) + k_3 \cos(t_i)) \le s_i, \quad i = 1, \dots, n,$
 $y_i - (k_1 + k_2 \sin(t_i) + k_3 \cos(t_i)) \ge -s_i, \quad i = 1, \dots, n,$
 $a_i - (k_2 \cos(t_i) - k_3 \sin(t_i)) \le h_i, \quad i = 1, \dots, n,$
 $a_i - (k_2 \cos(t_i) - k_3 \sin(t_i)) \ge -h_i, \quad i = 1, \dots, n,$
 $s_i, h_i \ge 0, \quad i = 1, \dots, n.$
 $k_1, k_2, k_3 \in \mathbb{R}.$