TMA947 / MMG621 — Nonlinear optimisation

Exercise 6 – Lagrangian relaxation

Emil Gustavsson, Michael Patriksson, Adam Wojciechowski

October 26, 2012

E6.1 (easy) A problem where an objective function f should be minimized has been analyzed by Lagrangian relaxing some constraints and the dual function $q(\mu)$ has been created. An iterative algorithm has produced the following results.

- (a) A primal feasible x^1 has been found and $f(x^1) = 6$. μ^1 is a vector with positive Lagrangian multipliers and $q(\mu^1) = -2$. What can you say about the optimal objective value f^* ?
- (b) In the next iteration, two more vectors x^2 and μ^2 (feasible) have been evaluated and $f(x^2) = 3$ and $q(\mu^2) = -4$. What can you now say about the optimal objective value f^* ?
- (c) Finally, we manage to maximize the dual function and $q^* = 3$. What are the conclusions regarding f^* ?

E6.2 (easy) Consider the problem (P):

minimize
$$4x_1 + 3x_2$$
,
subject to $x_1^2 + x_2^2 \le 25$,
 $(x_1 - 4)^2 + (x_2 - 1)^2 \ge 9$,

The point $\boldsymbol{x}_0 = (-4, -3)^T$ is a KKT to (P).

- (a) Is (P) convex? Can you say anything about the optimality of x_0 ?
- (b) Remove the second constraint and create a reduced problem (R). x_0 is a KKT point in (R). What can you say about the optimality of x_0 in (R)? In (P)?

E6.3 (easy) Consider the problem

$$\begin{array}{ll} \text{minimize} & x_1^3 x_2 - x_3^2 - x_1 x_3, \\ \text{subject to} & -x_1 + x_2 + x_3^2 \leq 4, \\ & x_1^3 - (x_2^2 - 1) + x_3 \geq 2, \\ & x_1 + x_3 \leq 6, \\ & x_1, x_2, x_3 \geq 0. \end{array}$$

Lagrange relax the first two constraints and state the dual function q as a minimization problem.

E6.4 (medium) Consider the problem:

$$\begin{array}{ll} \text{minimize} & x_1 - 3x_2,\\ \text{subject to} & -x_1 + x_2 \leq 1,\\ & x_1 + x_2 \leq 4,\\ & x_1, x_2 \geq 0. \end{array}$$

Lagrangian relax the first constraint and create the Lagrange function $L(x, \mu)$. Find and plot the Lagrangian dual function $q(\mu)$. What can you say about the optimal value of the primal problem? Can you find the optimal solution x^* to the primal problem?

E6.5 (medium) Consider the problem:

$$\begin{array}{ll} \text{minimize} & -2x_1 + x_2, \\ \text{subject to} & & x_1 + x_2 \leq 3, \\ & \boldsymbol{x} \in \left\{ \begin{pmatrix} 0\\ 0 \end{pmatrix}, \begin{pmatrix} 4\\ 0 \end{pmatrix}, \begin{pmatrix} 4\\ 0 \end{pmatrix}, \begin{pmatrix} 4\\ 4 \end{pmatrix}, \begin{pmatrix} 1\\ 2 \end{pmatrix}, \begin{pmatrix} 2\\ 1 \end{pmatrix} \right\}. \end{array}$$

Lagrange relax the inequality constraint. Which of the optimality conditions can not be fulfilled? Calculate the optimality gap $\Gamma = f^* - q^*$.