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Definition Relaxation

Consider the problem

f* =infinum  f(x), (1a)
subjectto x € S. (1b)

We say that a relaxation to (1) is a problem on the following form:

fz = infinum  fr(x), (2a)
subject to  x € Spg, (2b)
where
> fr(x) < f(x) forallxe$S (the relaxed function is lower on S)
» SR DS (the relaxed feasible set is larger)
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Relaxation theorem Relaxation

f* =infinum  f(x), 1) fz = infinum  fg(x),
subjectto x € S. subject to  x € Sg.

()

The relaxation theorem

a) £ < f*

b) If (2) is infeasible, then so is (1)

c) If (2) has an optimal solution, x}, for which

xp €S and fr(xg) = f(xg),

then x} is an optimal solution to (1) as well
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Relaxation theorem Relaxation

The relaxation theorem
a) fp < f*
b) If (2) is infeasible, then so is (1)
c) If (2) has an optimal solution, x, for which
xgp €S and fr(xg) = f(xg),

then x% is an optimal solution to (1) as well

Proof.
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Outline Relaxation

We will today

> Consider a specific relaxation technique called Lagrangian
relaxation.

> Complicated constraints will be added to the objective function with
a penalty.

> This gives us a relaxation of the original problem.

» The goal is to find the best possible penalties such that the relaxed
problem has the same optimal value as the original one.
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A simple relaxation Relaxation

Consider the problem to find

f* = infinum f(x), (3a)
subject to gi(x) <0, i=1,...,m, (3b)
x e X. (3¢)

> Assume the constraints (3b) are complicated
» If we removing them, the resulting problem
f* =infinum f(x),
subject to x € X,
is easy to solve

» Clearly a relaxation of the original problem
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Lagrangian relaxation, | Lagrangian relaxation

f* = infinum f(x), (4a)
subject to gi(x) <0, i=1,...,m, (4b)
x e X. (4c)

So instead of just removing the constraints, we add each constraint g; to
the objective function with a multiplier p;.

We define the Lagrange function as

L(x, p) = F(x) + Z pigi(x) = £(x) + " g(x)
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Lagrangian relaxation, Il Lagrangian relaxation

Given a multiplier vector & € R™, we define
p 12

the Lagrangian dual function evaluated at the point g € R™ as

q(p) = infinum  L(x,p) = infinum f(x) + " g(x),
subjectto x e X subject to xe X

We will later show that this is in fact a relaxation of the original problem
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Lagrange multipliers Lagrangian relaxation

We call the vector p* € R (nonnegative) a Lagrange muiltiplier if

f* = q(p*) = infinum  f(x) + p*"g(x),
subject to xe€ X

> If we minimize the Lagrange function L(x, p*) with x € X, we
obtain the same value as

> minimizing f(x) with {x € X, g(x) < 0}

» The multipliers, p; must be nonnegative in order not to favour
gx) > 0.
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Optimality conditions Lagrangian relaxation

Now assume that we have a Lagrange multiplier, *. How do we obtain
the optimal solution x*?

Theorem
Let pu* € RT be a Lagrange multiplier. Then, x* is optimal in the
original problem if and only if

a) x* € argmin L(x, u*) (x* is one of the solutions)
xeX
b) x* € X, g(x*) <0, (x* is feasible)
c) pigi(x*)=0,i=1,...,m (complementarity)
Proof:
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Example 1 Lagrangian relaxation

Consider the problem

f* = minimum f(x) = x% + x3, (5a)
subject to X1+ x >4, (5b)
x1,x2 > 0. (5¢)

We decide to Lagrangian relax constraint (5b). Find the optimal solution
if you know that p* = 4 is a Lagrange multiplier.

Solution:
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Connections with KKT Lagrangian relaxation

These optimality conditions extend the KKT-conditions. Assume

> The Lagrange function is not globally minimized, stationary points
are sufficient

» X =R"
> f,g’,'GC1

x* € argmin L(x,p*) = VIF(x*)+ ZN}“Vg,-(x*) =0
xeX i—1

x"eX,gx)<0 = gkx*)<0,i=1,....m
uwig(x*)=0,i=1,....m = pu'g(x*)=0,i=1,....m
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How do we find Lagrange multipliers? Duality

(p) = infingm Lx, ) = infinym {£(x) + 1 "g(x)} .

Take p > 0, and a feasible x (i.e. x € X, g(x) < 0) then

q(p) < f(x)

» This means that the problem infyex L(x, i) is a relaxation to the
original problem whenever pu > 0.

> Since g(p) is always smaller than 7(x), we would like to find a p
such that g(u) is as large as possible.
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Lagrangian dual problem, | Duality

q(p) = infinum L(x, p) = infinum {f(x) + " g(x)}
We define the Lagrangian dual problem as the problem to find

q" = supremum q(u),
subjectto wu >0

» For some u, g(p) = —oo is possible; if this is true for all u > 0, we
say that ¢* = —o0.

> The effective domain of g is Dy = {x € R™ | g(p) > —o0}
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Lagrangian dual problem, Il Duality

Theorem
The effective domain D, of g is a convex set, and q is a concave
function on D,.

Proof:
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Lagrangian dual problem, IlI Duality

Since q is a concave function on the convex set D, the optimization
problem

g = supremum q(s),
subjectto p >0

is a convex problem.
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Weak duality, | Duality

Theorem Let x € X, g(x) < 0 and & > 0 (both feasible in their
respective problems). Then
q(p) < f(x).
In particular
holds.
If g(p) = f(x), then the pair (x, p) is optimal in its respecitve
problem.
Proof:
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Weak duality, Il Duality

> Note 1:
The reverse is not always true. Meaning that x and @ could be
optimal in their respective problems and g(u) < f(x).

> Note 2:

The week duality theorem is a consequence of the relaxation
theorem. For any >0

f=f

fr = L(-, )
S:=XN{xeR"|g(x) <0}
Sp =X
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Weak duality, Il Duality

> Note 3:
Powerful tool in practice when solving optimization problems.
Example.

We are solving some complicated optimization problem and have
obtained an x with a cost f(x) = 1,000,000 Skr. We also have
found an p with g(p) = 999,999 Skr. Then we know that we can
not improve our solution with more than 1 Skr, meaning that its
hard to justify searching for better solutions.

» Note 4:

If we have an x and an u, we get a quality measure of the solution
f(x)—q(p)
x by q(p)
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Weak duality, IV Duality

f* = infinum f(x),

subject to g(x) <0, (P)
x € X.
q" = supremum q(p),
(D)

subject to nw=>0

» From weak duality we have that ¢* < f*
> If g* = f*, we say that there is no duality gap.

> As we will see, this occurs when (P) is convex and some suitable
CQ holds.

TMA947 — Lecture 7 Convex duality



Example 2 Duality

Consider the problem

f* = minimize f(x) = x? + x3, (6a)
subject to X1+ x >4, (6b)
x1,x2 > 0. (6¢c)

We decide to Lagrangian relax constraint (6b). Formulate the dual
function g(u) explicitly, find ¢* and f*.

Solution:
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Note on how to construct L(x, pt) Duality

When considering the problem to find

f* = infinum f(x),
subject to g(x) <0, (P)
xe X

)

we can decide which constraints to relax.

» Many constraints are included in X

» The problem g(u) is harder to solve
» The bounds are better (g(p) will be closer to f(x))

» Few constraints are included in X

» The problem g(u) is easier to solve
» The bounds are worse (g(p) will be further away from £(x))

TMA947 — Lecture 7 Convex duality



Global optimality, | Global optimality

We will now

» Characterize every optimal primal and dual solution

» when there exist a Lagrange multiplier and

» no duality gap
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Global optimality, Il Global optimality

Theorem
The vector (x*, u*) is a pair of optimal primal solution and Lagrange
multiplier if and only if

x € X, g(x*)<0, (primal feasibility) (7a)

p* >0, (dual feasibility) (7b)

x* € argmin L(x, pu*), (Lagrangian optimality) (7¢)
xeX

i gi(x*) =0, (complementary slackness) (7d)

Proof:
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Global optimality, I Global optimality

Theorem

The vector (x*, *) is a pair of optimal primal solution and Lagrange
multiplier if and only if x € X and p > 0, and (x*, u*) is a saddle
point of the Lagrangian function on X x R, that is,

L(x*, p) < L(x*, p*) < L(x, ™), (x,p1) € X x RT.
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Strong duality Strong duality

» So far, we have not assumed any properties of the problem
f* = infinum f(x),

subject to  g(x) <0,
x € X,

» However, the characterization of primal-dual optimal solutions
depends on the fact that

> There exist a Lagrange multiplier, pt*
» The duality gap is zero (f* = ¢*)

» In order to establish strong duality, that is, to establish sufficient
conditions under which there is no duality gap, we need convexity.

TMA947 — Lecture 7 Convex duality



Convexity and Slater Strong duality

» Consider the problem

f* = infinum f(x),

subject to  g(x) <0, (P)
x € X,
where f and g;, i = 1,..., m are convex functions and X is a

convex set.

» Assume the Slater condition:

Ix € X with g(x) <0
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Strong duality Theorem, | Strong duality

Theorem
Suppose (P) is convex, and Slater's CQ holds, then

a) There is no duality gap (f* = ¢*) and there exist at least one
Lagrange multiplier p*. Moreover, the set of Lagrange multiplier
is bounded and convex.

b) If the infinum in (P) is attained at some x*, then the pair
(x*, p*) satisfies the global optimality conditions.

c) If the functions f and g;, i = 1,...,m are in C! and X is open,

then the global optimality conditions are equivalent with the
KKT-conditions.
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Strong duality Theorem, Il Strong duality

Consequences of (P) being convex is thus:

> If we can solve the dual problem to optimality (i.e. find p* and ¢*),
we also know the optimal primal value f*.

» But then we have solved

q" = q(p") = min L(x, n")
> We can find the optimal solution x* by letting it fulfill the
optimality conditions

x* € argminl(x, u*)
xeX

0,

IA

g(x")

/J’Tgl(x*): i:]-v"',m

Note: The last step is not always trivial.
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Linear programs, | Linear programs

Consider the linear program

f* =infinum  ¢'x, (8a)
subject to Ax =b, (8b)
x>0, (8¢c)

where c € R", A € R™*" and b € R™. If we let X = R/, the Lagrangian
dual problem is

q* = supremum b’ p, (9a)
subject to AT <c, (9b)
peRT (9¢)

Why?
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Linear programs, |l Linear programs

f* =infinum c¢’x,

subject to Ax = b,
x>0,

Lagrangian relax constraint (10b) and get L(x, ) = c¢"x+ ' (b —

(10a)
(10b)
(10c)

Ax).

a(w) = inf {c"x+ uT(b— Ax)} =bTp + inf {(c—ATw)x}

_[bTp fATp <,
—oo  otherwise

= q* = supremum b’ p,
subject to ATu <c,
ueR™
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Questions for the break Questions

Find * and g* in the following problems when Lagrangian relaxing the
blue constraint. If the problem if infeasible, by definition f* = oo

f* =min 1/x,
st. x<0, (A)
x > 0.

f* =min x,
st x*<0, (B)
x> 0.

f* = min x1 + xo,
s.t. x1< 07 (C)
x1 > 0.
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