

Emil Gustavsson Department of Mathematical Sciences Chalmers University of Technology and Göteborg University November 19, 2012

CHALMERS

GÖTEBORGS UNIVERSITET

▲□▶ ▲□▶ ▲臣▶ ★臣▶ 三臣 - のへで

Definition

Relaxation

Consider the problem

$$f^* = \inf_{x \in S} f(x), \tag{1a}$$
 subject to $x \in S.$ (1b)

We say that a relaxation to (1) is a problem on the following form:

$$f_R^* = \inf f_R(\mathbf{x}),$$
 (2a)

subject to
$$\mathbf{x} \in S_R$$
, (2b)

where

f_R(**x**) ≤ *f*(**x**) for all **x** ∈ *S* (the relaxed function is lower on *S*)
 S_R ⊇ *S* (the relaxed feasible set is larger)

Relaxation

Example

Relaxation

$$f^* = \inf_{x \in S} f(x), \qquad (1) \qquad \begin{array}{c} f_R^* = \inf_{x \in S} f_R(x), \\ \text{subject to } x \in S. \end{array}$$
(2)

The relaxation theorem

a) $f_R^* \leq f^*$ b) If (2) is infeasible, then so is (1) c) If (2) has an optimal solution, \mathbf{x}_R^* , for which $\mathbf{x}_R^* \in S$ and $f_R(\mathbf{x}_R^*) = f(\mathbf{x}_R^*)$, then \mathbf{x}_R^* is an optimal solution to (1) as well

Relaxation

Example

Relaxation

TMA947 - Lecture 7

Convex duality

7 / 36

The relaxation theorem

- a) $f_R^* \leq f^*$
- b) If (2) is infeasible, then so is (1)
- c) If (2) has an optimal solution, \mathbf{x}_{R}^{*} , for which

$$\mathbf{x}_R^* \in S$$
 and $f_R(\mathbf{x}_R^*) = f(\mathbf{x}_R^*)$,

then \mathbf{x}_{R}^{*} is an optimal solution to (1) as well

Proof.

Outline

We will today

- Consider a specific relaxation technique called Lagrangian relaxation.
- Complicated constraints will be added to the objective function with a penalty.
- This gives us a relaxation of the original problem.
- The goal is to find the best possible penalties such that the relaxed problem has the same optimal value as the original one.

A simple relaxation

Relaxation

Consider the problem to find

$$f^* = \inf f(\mathbf{x}),$$
 (3a)

subject to
$$g_i(\mathbf{x}) \leq 0, \quad i = 1, \dots, m,$$
 (3b)

$$\mathbf{x} \in X.$$
 (3c)

Assume the constraints (3b) are complicated

If we removing them, the resulting problem

 $f^* = \text{infinum} \quad f(\mathbf{x}),$ subject to $\mathbf{x} \in X,$

is easy to solve

Clearly a relaxation of the original problem

$$f^* = \inf f(\mathbf{x}), \tag{4a}$$

subject to
$$g_i(\mathbf{x}) \leq 0$$
, $i = 1, \dots, m$, (4b)
 $\mathbf{x} \in X$. (4c)

So instead of just removing the constraints, we add each constraint g_i to the objective function with a **multiplier** μ_i .

We define the Lagrange function as $L(\mathbf{x}, \boldsymbol{\mu}) := f(\mathbf{x}) + \sum_{i=1}^{m} \mu_i g_i(\mathbf{x}) = f(\mathbf{x}) + \boldsymbol{\mu}^T \mathbf{g}(\mathbf{x})$ Given a multiplier vector $\boldsymbol{\mu} \in \mathbb{R}^m$, we define

the Lagrangian dual function evaluated at the point $\mu \in \mathbb{R}^m$ as $q(\mu) = \text{infinum } L(\mathbf{x}, \mu) = \text{infinum } f(\mathbf{x}) + \mu^T \mathbf{g}(\mathbf{x}),$ subject to $\mathbf{x} \in X$ subject to $\mathbf{x} \in X$

We will later show that this is in fact a relaxation of the original problem

We call the vector $\mu^* \in \mathbb{R}^m_+$ (nonnegative) a Lagrange multiplier if

$$f^* = q(\mu^*) = \text{infinum} \quad f(\mathbf{x}) + {\mu^*}^T \mathbf{g}(\mathbf{x}),$$

subject to $\mathbf{x} \in X$

- If we minimize the Lagrange function L(x, µ^{*}) with x ∈ X, we obtain the same value as
- minimizing $f(\mathbf{x})$ with $\{\mathbf{x} \in X, \mathbf{g}(\mathbf{x}) \leq \mathbf{0}\}$
- The multipliers, μ_i must be nonnegative in order not to favour $g(\mathbf{x}) > 0$.

Now assume that we have a Lagrange multiplier, μ^* . How do we obtain the optimal solution \mathbf{x}^* ?

TheoremLet $\mu^* \in \mathbb{R}^m_+$ be a Lagrange multiplier. Then, \mathbf{x}^* is optimal in the
original problem if and only ifa) $\mathbf{x}^* \in \operatorname*{argmin}_{\mathbf{x} \in X} L(\mathbf{x}, \mu^*)$ (\mathbf{x}^* is one of the solutions)b) $\mathbf{x}^* \in X$, $\mathbf{g}(\mathbf{x}^*) \leq \mathbf{0}$,(\mathbf{x}^* is feasible)c) $\mu_i g_i(\mathbf{x}^*) = 0$, $i = 1, \dots, m$ (complementarity)

Proof:

Consider the problem

$$f^* = \min m f(\mathbf{x}) = x_1^2 + x_2^2,$$
 (5a)

subject to
$$x_1 + x_2 \ge 4$$
, (5b)

$$x_1, x_2 \ge 0. \tag{5c}$$

We decide to Lagrangian relax constraint (5b). Find the optimal solution if you know that $\mu^*=4$ is a Lagrange multiplier.

Solution:

Connections with KKT

These optimality conditions extend the KKT-conditions. Assume

- The Lagrange function is not globally minimized, stationary points are sufficient
- $\triangleright X = \mathbb{R}^n$
- ► $f, g_i \in C^1$

$$\mathbf{x}^* \in \underset{\mathbf{x} \in X}{\operatorname{argmin}} \ \mathcal{L}(\mathbf{x}, \boldsymbol{\mu}^*) \Rightarrow \quad \nabla f(\mathbf{x}^*) + \sum_{i=1}^m \mu_i^* \nabla g_i(\mathbf{x}^*) = 0$$
$$\mathbf{x}^* \in X, \ \mathbf{g}(\mathbf{x}^*) \le \mathbf{0} \Rightarrow \qquad g_i(\mathbf{x}^*) \le 0, \ i = 1, \dots, m$$
$$\mu_i^* g_i(\mathbf{x}^*) = 0, \ i = 1, \dots, m \Rightarrow \qquad \mu_i^* g_i(\mathbf{x}^*) = 0, \ i = 1, \dots, m$$

Duality

$$q(\boldsymbol{\mu}) = \inf_{\mathbf{x} \in \mathcal{X}} L(\mathbf{x}, \boldsymbol{\mu}) = \inf_{\mathbf{x} \in \mathcal{X}} \left\{ f(\mathbf{x}) + \boldsymbol{\mu}^{\mathsf{T}} \mathbf{g}(\mathbf{x}) \right\}.$$

Take $\mu \geq {f 0},$ and a feasible x (i.e. ${f x} \in X,$ ${f g}({f x}) \leq {f 0})$ then $q(\mu) \leq f({f x})$

- ► This means that the problem inf_{x∈X} L(x, µ) is a relaxation to the original problem whenever µ ≥ 0.
- Since q(μ) is always smaller than f(x), we would like to find a μ such that q(μ) is as large as possible.

$$q(\boldsymbol{\mu}) = \inf_{\mathbf{x} \in X} L(\mathbf{x}, \boldsymbol{\mu}) = \inf_{\mathbf{x} \in X} \left\{ f(\mathbf{x}) + \boldsymbol{\mu}^T \mathbf{g}(\mathbf{x}) \right\}.$$

We define the Lagrangian dual problem as the problem to find

 $q^* = ext{supremum } q(oldsymbol{\mu}),$ $ext{subject to } oldsymbol{\mu} \geq oldsymbol{0}$

- For some μ , $q(\mu) = -\infty$ is possible; if this is true for all $\mu \ge 0$, we say that $q^* = -\infty$.
- ▶ The effective domain of q is $D_q = \{\mu \in \mathbb{R}^m \mid q(\mu) > -\infty\}$

Theorem

The effective domain D_q of q is a convex set, and q is a concave function on D_q .

Proof:

Since q is a concave function on the convex set D_q , the optimization problem

 $q^* = {
m supremum} \; q(oldsymbol{\mu}),$ subject to $oldsymbol{\mu} \geq oldsymbol{0}$

is a convex problem.

Theorem Let $\mathbf{x} \in X$, $\mathbf{g}(\mathbf{x}) \leq \mathbf{0}$ and $\mu \geq \mathbf{0}$ (both feasible in their respective problems). Then $q(\mu) \leq f(\mathbf{x})$. In particular $q^* \leq f^*$ holds.

If $q(\mu) = f(\mathbf{x})$, then the pair (\mathbf{x}, μ) is optimal in its respective problem.

Proof:

► Note 1:

The reverse is not always true. Meaning that \mathbf{x} and $\boldsymbol{\mu}$ could be optimal in their respective problems and $q(\boldsymbol{\mu}) < f(\mathbf{x})$.

► Note 2:

The week duality theorem is a consequence of the relaxation theorem. For any $\mu \geq 0$

$$f := f$$

$$f_R := L(\cdot, \mu)$$

$$S := X \cap \{ \mathbf{x} \in \mathbb{R}^n \mid \mathbf{g}(\mathbf{x}) \le \mathbf{0} \}$$

$$S_R := X$$

► Note 3:

Powerful tool in practice when solving optimization problems.

Example.

We are solving some complicated optimization problem and have obtained an **x** with a cost $f(\mathbf{x}) = 1,000,000$ Skr. We also have found an μ with $q(\mu) = 999,999$ Skr. Then we know that we can not improve our solution with more than 1 Skr, meaning that its hard to justify searching for better solutions.

► Note 4:

If we have an ${\bf x}$ and an $\mu,$ we get a quality measure of the solution ${\bf x}$ by $\frac{f({\bf x})-q(\mu)}{q(\mu)}$

Weak duality, IV

$$\begin{aligned} f^* &= \text{infinum} & f(\mathbf{x}), \\ &\text{subject to} & \mathbf{g}(\mathbf{x}) \leq \mathbf{0}, \\ & \mathbf{x} \in X. \end{aligned}$$

$$q^* = {
m supremum} \quad q(\mu), \ {
m subject to} \quad \mu \geq {f 0}$$

- From weak duality we have that $q^* \leq f^*$
- If $q^* = f^*$, we say that there is no duality gap.
- As we will see, this occurs when (P) is convex and some suitable CQ holds.

Duality

Duality

Consider the problem

$$f^* = \text{minimize } f(\mathbf{x}) = x_1^2 + x_2^2,$$
 (6a)

subject to $x_1 + x_2 \ge 4$, (6b)

 $x_1, x_2 \ge 0.$ (6c)

We decide to Lagrangian relax constraint (6b). Formulate the dual function $q(\mu)$ explicitly, find q^* and f^* .

Solution:

Note on how to construct $L(\mathbf{x}, \boldsymbol{\mu})$

When considering the problem to find

$$egin{aligned} f^* &= & ext{infinum} & f(\mathbf{x}), \ & ext{subject to} & \mathbf{g}(\mathbf{x}) \leq \mathbf{0}, \ & ext{} \mathbf{x} \in X, \end{aligned}$$

we can decide which constraints to relax.

- Many constraints are included in X
 - The problem $q(\mu)$ is harder to solve
 - The bounds are better $(q(\mu)$ will be closer to $f(\mathbf{x})$)
- **•** Few constraints are included in *X*
 - The problem $q(\mu)$ is easier to solve
 - The bounds are worse $(q(\mu)$ will be further away from $f(\mathbf{x})$

Duality

We will now

Characterize every optimal primal and dual solution

when there exist a Lagrange multiplier and

no duality gap

Theorem

The vector $(\mathbf{x}^*, \boldsymbol{\mu}^*)$ is a pair of optimal primal solution and Lagrange multiplier if and only if

$$\begin{split} \mathbf{x} &\in X, \quad \mathbf{g}(\mathbf{x}^*) \leq \mathbf{0}, \quad \text{(primal feasibility)} & (7a) \\ \boldsymbol{\mu}^* \geq \mathbf{0}, \quad \text{(dual feasibility)} & (7b) \\ \mathbf{x}^* &\in \operatornamewithlimits{argmin}_{\mathbf{x} \in X} L(\mathbf{x}, \boldsymbol{\mu}^*), \quad \text{(Lagrangian optimality)} & (7c) \end{split}$$

$$\mu_i^* g_i(\mathbf{x}^*) = 0$$
, (complementary slackness) (7d)

Proof:

Theorem

The vector $(\mathbf{x}^*, \boldsymbol{\mu}^*)$ is a pair of optimal primal solution and Lagrange multiplier if and only if $\mathbf{x} \in X$ and $\boldsymbol{\mu} \ge \mathbf{0}$, and $(\mathbf{x}^*, \boldsymbol{\mu}^*)$ is a saddle point of the Lagrangian function on $X \times \mathbb{R}^m_+$, that is,

$$L(\mathbf{x}^*, \boldsymbol{\mu}) \leq L(\mathbf{x}^*, \boldsymbol{\mu}^*) \leq L(\mathbf{x}, \boldsymbol{\mu}^*), \quad (\mathbf{x}, \boldsymbol{\mu}) \in X \times \mathbb{R}^m_+.$$

So far, we have not assumed any properties of the problem

$$\begin{aligned} f^* &= \mathsf{infinum} & f(\mathbf{x}), \\ & \mathsf{subject to} & \mathbf{g}(\mathbf{x}) \leq \mathbf{0}, \\ & \mathbf{x} \in X, \end{aligned} \tag{P}$$

 However, the characterization of primal-dual optimal solutions depends on the fact that

- \blacktriangleright There exist a Lagrange multiplier, μ^*
- The duality gap is zero $(f^* = q^*)$
- In order to establish strong duality, that is, to establish sufficient conditions under which there is no duality gap, we need convexity.

Consider the problem

$$\begin{array}{ll} f^{*} = \mathop{\mathsf{infinum}}_{\mathsf{subject to}} & f(\mathbf{x}), \\ & \mathbf{g}(\mathbf{x}) \leq \mathbf{0}, \\ & \mathbf{x} \in X, \end{array} \tag{P}$$

where f and g_i , i = 1, ..., m are convex functions and X is a convex set.

Assume the Slater condition:

$$\exists \mathbf{x} \in X \text{ with } \mathbf{g}(\mathbf{x}) < \mathbf{0}$$

Theorem

Suppose (P) is convex, and Slater's CQ holds, then

- a) There is no duality gap $(f^* = q^*)$ and there exist at least one Lagrange multiplier μ^* . Moreover, the set of Lagrange multiplier is bounded and convex.
- b) If the infinum in (P) is attained at some \mathbf{x}^* , then the pair $(\mathbf{x}^*, \boldsymbol{\mu}^*)$ satisfies the global optimality conditions.
- c) If the functions f and g_i , i = 1, ..., m are in C^1 and X is open, then the global optimality conditions are equivalent with the KKT-conditions.

Strong duality Theorem, II

Consequences of (P) being convex is thus:

- ► If we can solve the dual problem to optimality (i.e. find µ* and q*), we also know the optimal primal value f*.
- But then we have solved

$$q^* = q(\mu^*) = \min_{\mathbf{x} \in X} L(\mathbf{x}, \mu^*).$$

We can find the optimal solution x* by letting it fulfill the optimality conditions

$$egin{aligned} \mathbf{x}^* \in & \operatorname*{argmin}_{\mathbf{x} \in \mathcal{X}} L(\mathbf{x}, oldsymbol{\mu}^*) \ \mathbf{g}(\mathbf{x}^*) \leq \mathbf{0}, \ \mu_i^* g_i(\mathbf{x}^*) = 0, \quad i = 1, \dots, m \end{aligned}$$

Note: The last step is not always trivial.

Linear programs

Consider the linear program

- $f^* = \inf \operatorname{infinum} \quad \mathbf{c}^T \mathbf{x}, \tag{8a}$
 - subject to $\mathbf{A}\mathbf{x} = \mathbf{b}$, (8b)

$$\mathbf{x} \ge \mathbf{0},$$
 (8c)

where $\mathbf{c} \in \mathbb{R}^n$, $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{b} \in \mathbb{R}^m$. If we let $X = \mathbb{R}^n_+$, the Lagrangian dual problem is

$$q^* =$$
supremum $\mathbf{b}^T \boldsymbol{\mu},$ (9a)

subject to
$$\mathbf{A}^{\mathsf{T}} \boldsymbol{\mu} \leq \mathbf{c},$$
 (9b)

$$\boldsymbol{\mu} \in \mathbb{R}^m \tag{9c}$$

Why?

Linear programs, II

$$f^* = \inf \operatorname{infinum} \quad \mathbf{c}^T \mathbf{x}, \tag{10a}$$

subject to
$$\mathbf{A}\mathbf{x} = \mathbf{b}$$
, (10b)

 $\mathbf{x} \ge \mathbf{0},$ (10c)

Lagrangian relax constraint (10b) and get $L(\mathbf{x}, \mu) = \mathbf{c}^T \mathbf{x} + \mu^T (\mathbf{b} - \mathbf{A}\mathbf{x})$.

$$\begin{split} q(\boldsymbol{\mu}) &= \inf_{\mathbf{x} \geq \mathbf{0}} \left\{ \mathbf{c}^{\mathsf{T}} \mathbf{x} + \boldsymbol{\mu}^{\mathsf{T}} (\mathbf{b} - \mathbf{A} \mathbf{x}) \right\} = \mathbf{b}^{\mathsf{T}} \boldsymbol{\mu} + \inf_{\mathbf{x} \geq \mathbf{0}} \left\{ (\mathbf{c} - \mathbf{A}^{\mathsf{T}} \boldsymbol{\mu})^{\mathsf{T}} \mathbf{x} \right\} \\ &= \left\{ \begin{array}{c} \mathbf{b}^{\mathsf{T}} \boldsymbol{\mu} & \text{if } \mathbf{A}^{\mathsf{T}} \boldsymbol{\mu} \leq \mathbf{c}, \\ -\infty & \text{otherwise} \end{array} \right. \end{split}$$

$$\implies q^* = \text{supremum } \mathbf{b}^T \boldsymbol{\mu}, \qquad (11a)$$

subject to
$$\mathbf{A}^T \boldsymbol{\mu} \leq \mathbf{c}$$
, (11b)

$$\boldsymbol{\mu} \in \mathbb{R}^m$$
 (11c)

Questions for the break

Questions

Find f^* and q^* in the following problems when Lagrangian relaxing the blue constraint. If the problem if infeasible, by definition $f^* = \infty$

f

* = min
$$1/x$$
,
s.t. $x \le 0$, (A)
 $x > 0$.

$$f^* = \min x,$$

s.t. $x^2 \le 0,$ (B)
 $x > 0.$

$$f^* = \min x_1 + x_2,$$

s.t. $x_1 \le 0,$ (C)
 $x_1 > 0.$