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RelaxationDefinition

Consider the problem

f ∗ = infinum f (x), (1a)

subject to x ∈ S . (1b)

We say that a relaxation to (1) is a problem on the following form:

f ∗R = infinum fR(x), (2a)

subject to x ∈ SR , (2b)

where

◮ fR(x) ≤ f (x) for all x ∈ S (the relaxed function is lower on S)

◮ SR ⊇ S (the relaxed feasible set is larger)
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RelaxationRelaxation theorem

f ∗ = infinum f (x),

subject to x ∈ S .
(1)

f ∗R = infinum fR(x),

subject to x ∈ SR .
(2)

The relaxation theorem

a) f ∗R ≤ f ∗

b) If (2) is infeasible, then so is (1)

c) If (2) has an optimal solution, x∗R , for which

x∗R ∈ S and fR(x∗R) = f (x∗R),

then x∗R is an optimal solution to (1) as well
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RelaxationExample
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RelaxationRelaxation theorem

The relaxation theorem

a) f ∗R ≤ f ∗

b) If (2) is infeasible, then so is (1)

c) If (2) has an optimal solution, x∗R , for which

x∗R ∈ S and fR(x∗R) = f (x∗R),

then x∗R is an optimal solution to (1) as well

Proof.
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RelaxationOutline

We will today

◮ Consider a specific relaxation technique called Lagrangian

relaxation.

◮ Complicated constraints will be added to the objective function with
a penalty.

◮ This gives us a relaxation of the original problem.

◮ The goal is to find the best possible penalties such that the relaxed
problem has the same optimal value as the original one.
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RelaxationA simple relaxation

Consider the problem to find

f ∗ = infinum f (x), (3a)

subject to gi(x) ≤ 0, i = 1, . . . , m, (3b)

x ∈ X . (3c)

◮ Assume the constraints (3b) are complicated

◮ If we removing them, the resulting problem

f ∗ = infinum f (x),

subject to x ∈ X ,

is easy to solve

◮ Clearly a relaxation of the original problem
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Lagrangian relaxationLagrangian relaxation, I

f ∗ = infinum f (x), (4a)

subject to gi(x) ≤ 0, i = 1, . . . , m, (4b)

x ∈ X . (4c)

So instead of just removing the constraints, we add each constraint gi to
the objective function with a multiplier µi .

We define the Lagrange function as

L(x, µ) := f (x) +

m
∑

i=1

µigi(x) = f (x) + µ
Tg(x)
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Lagrangian relaxationLagrangian relaxation, II

Given a multiplier vector µ ∈ R
m, we define

the Lagrangian dual function evaluated at the point µ ∈ R
m as

q(µ) = infinum L(x, µ) = infinum f (x) + µ
Tg(x),

subject to x ∈ X subject to x ∈ X

We will later show that this is in fact a relaxation of the original problem
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Lagrangian relaxationLagrange multipliers

We call the vector µ
∗ ∈ R

m
+ (nonnegative) a Lagrange multiplier if

f ∗ = q(µ∗) = infinum f (x) + µ
∗Tg(x),

subject to x ∈ X

◮ If we minimize the Lagrange function L(x, µ∗) with x ∈ X , we
obtain the same value as

◮ minimizing f (x) with {x ∈ X , g(x) ≤ 0}

◮ The multipliers, µi must be nonnegative in order not to favour
g(x) > 0.
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Lagrangian relaxationOptimality conditions

Now assume that we have a Lagrange multiplier, µ
∗. How do we obtain

the optimal solution x∗?

Theorem

Let µ
∗ ∈ R

m
+ be a Lagrange multiplier. Then, x∗ is optimal in the

original problem if and only if

a) x∗ ∈ argmin
x∈X

L(x, µ∗) (x∗ is one of the solutions)

b) x∗ ∈ X , g(x∗) ≤ 0, (x∗ is feasible)

c) µigi(x
∗) = 0, i = 1, . . . , m (complementarity)

Proof:
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Lagrangian relaxationExample 1

Consider the problem

f ∗ = minimum f (x) = x2
1 + x2

2 , (5a)

subject to x1 + x2 ≥ 4, (5b)

x1, x2 ≥ 0. (5c)

We decide to Lagrangian relax constraint (5b). Find the optimal solution
if you know that µ∗ = 4 is a Lagrange multiplier.

Solution:
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Lagrangian relaxationConnections with KKT

These optimality conditions extend the KKT-conditions. Assume

◮ The Lagrange function is not globally minimized, stationary points
are sufficient

◮ X = R
n

◮ f , gi ∈ C 1

x∗ ∈ argmin
x∈X

L(x, µ∗) ⇒ ∇f (x∗) +

m
∑

i=1

µ
∗
i ∇gi(x

∗) = 0

x∗ ∈ X , g(x∗) ≤ 0 ⇒ gi(x
∗) ≤ 0, i = 1, . . . , m

µ
∗
i gi(x

∗) = 0, i = 1, . . . , m ⇒ µ
∗
i gi(x

∗) = 0, i = 1, . . . , m
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DualityHow do we find Lagrange multipliers?

q(µ) = infinum
x∈X

L(x, µ) = infinum
x∈X

{

f (x) + µ
Tg(x)

}

.

Take µ ≥ 0, and a feasible x (i.e. x ∈ X , g(x) ≤ 0) then

q(µ) ≤ f (x)

◮ This means that the problem infx∈X L(x, µ) is a relaxation to the
original problem whenever µ ≥ 0.

◮ Since q(µ) is always smaller than f (x), we would like to find a µ

such that q(µ) is as large as possible.
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DualityLagrangian dual problem, I

q(µ) = infinum
x∈X

L(x, µ) = infinum
x∈X

{

f (x) + µ
Tg(x)

}

.

We define the Lagrangian dual problem as the problem to find

q∗ = supremum q(µ),

subject to µ ≥ 0

◮ For some µ, q(µ) = −∞ is possible; if this is true for all µ ≥ 0, we
say that q∗ = −∞.

◮ The effective domain of q is Dq = {µ ∈ R
m | q(µ) > −∞}
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DualityLagrangian dual problem, II

Theorem

The effective domain Dq of q is a convex set, and q is a concave
function on Dq .

Proof:
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DualityLagrangian dual problem, III

Since q is a concave function on the convex set Dq, the optimization
problem

q∗ = supremum q(µ),

subject to µ ≥ 0

is a convex problem.
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DualityWeak duality, I

Theorem Let x ∈ X , g(x) ≤ 0 and µ ≥ 0 (both feasible in their
respective problems). Then

q(µ) ≤ f (x).

In particular
q∗ ≤ f ∗

holds.
If q(µ) = f (x), then the pair (x, µ) is optimal in its respecitve
problem.

Proof:
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DualityWeak duality, II

◮ Note 1:

The reverse is not always true. Meaning that x and µ could be
optimal in their respective problems and q(µ) < f (x).

◮ Note 2:

The week duality theorem is a consequence of the relaxation
theorem. For any µ ≥ 0

f := f

fR := L(·, µ)

S := X ∩ {x ∈ R
n | g(x) ≤ 0}

SR := X
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DualityWeak duality, III

◮ Note 3:

Powerful tool in practice when solving optimization problems.

Example.

We are solving some complicated optimization problem and have
obtained an x with a cost f (x) = 1, 000, 000 Skr. We also have
found an µ with q(µ) = 999, 999 Skr. Then we know that we can
not improve our solution with more than 1 Skr, meaning that its
hard to justify searching for better solutions.

◮ Note 4:

If we have an x and an µ, we get a quality measure of the solution

x by f (x)−q(µ)
q(µ)
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DualityWeak duality, IV

f ∗ = infinum f (x),

subject to g(x) ≤ 0,

x ∈ X .

(P)

q∗ = supremum q(µ),

subject to µ ≥ 0
(D)

◮ From weak duality we have that q∗ ≤ f ∗

◮ If q∗ = f ∗, we say that there is no duality gap.

◮ As we will see, this occurs when (P) is convex and some suitable
CQ holds.
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DualityExample 2

Consider the problem

f ∗ = minimize f (x) = x2
1 + x2

2 , (6a)

subject to x1 + x2 ≥ 4, (6b)

x1, x2 ≥ 0. (6c)

We decide to Lagrangian relax constraint (6b). Formulate the dual
function q(µ) explicitly, find q∗ and f ∗.

Solution:
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DualityNote on how to construct L(x, µ)

When considering the problem to find

f ∗ = infinum f (x),

subject to g(x) ≤ 0,

x ∈ X ,

(P)

we can decide which constraints to relax.

◮ Many constraints are included in X

◮ The problem q(µ) is harder to solve
◮ The bounds are better (q(µ) will be closer to f (x))

◮ Few constraints are included in X

◮ The problem q(µ) is easier to solve
◮ The bounds are worse (q(µ) will be further away from f (x))
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Global optimalityGlobal optimality, I

We will now

◮ Characterize every optimal primal and dual solution

◮ when there exist a Lagrange multiplier and

◮ no duality gap
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Global optimalityGlobal optimality, II

Theorem

The vector (x∗, µ∗) is a pair of optimal primal solution and Lagrange
multiplier if and only if

x ∈ X , g(x∗) ≤ 0, (primal feasibility) (7a)

µ
∗ ≥ 0, (dual feasibility) (7b)

x∗ ∈ argmin
x∈X

L(x, µ∗), (Lagrangian optimality) (7c)

µ
∗
i gi (x

∗) = 0, (complementary slackness) (7d)

Proof:
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Global optimalityGlobal optimality, III

Theorem

The vector (x∗, µ∗) is a pair of optimal primal solution and Lagrange
multiplier if and only if x ∈ X and µ ≥ 0, and (x∗, µ∗) is a saddle

point of the Lagrangian function on X × R
m
+, that is,

L(x∗, µ) ≤ L(x∗, µ∗) ≤ L(x, µ∗), (x, µ) ∈ X × R
m
+.
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Strong dualityStrong duality

◮ So far, we have not assumed any properties of the problem

f ∗ = infinum f (x),

subject to g(x) ≤ 0,

x ∈ X ,

(P)

◮ However, the characterization of primal-dual optimal solutions
depends on the fact that

◮ There exist a Lagrange multiplier, µ
∗

◮ The duality gap is zero (f ∗ = q∗)

◮ In order to establish strong duality, that is, to establish sufficient
conditions under which there is no duality gap, we need convexity.
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Strong dualityConvexity and Slater

◮ Consider the problem

f ∗ = infinum f (x),

subject to g(x) ≤ 0,

x ∈ X ,

(P)

where f and gi , i = 1, . . . , m are convex functions and X is a
convex set.

◮ Assume the Slater condition:

∃ x ∈ X with g(x) < 0
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Strong dualityStrong duality Theorem, I

Theorem

Suppose (P) is convex, and Slater’s CQ holds, then

a) There is no duality gap (f ∗ = q∗) and there exist at least one
Lagrange multiplier µ

∗. Moreover, the set of Lagrange multiplier
is bounded and convex.

b) If the infinum in (P) is attained at some x∗, then the pair
(x∗, µ∗) satisfies the global optimality conditions.

c) If the functions f and gi , i = 1, . . . , m are in C 1 and X is open,
then the global optimality conditions are equivalent with the
KKT-conditions.
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Strong dualityStrong duality Theorem, II

Consequences of (P) being convex is thus:

◮ If we can solve the dual problem to optimality (i.e. find µ
∗ and q∗),

we also know the optimal primal value f ∗.

◮ But then we have solved

q∗ = q(µ∗) = min
x∈X

L(x, µ∗).

◮ We can find the optimal solution x∗ by letting it fulfill the
optimality conditions

x∗ ∈ argmin
x∈X

L(x, µ∗)

g(x∗) ≤ 0,

µ
∗
i gi(x

∗) = 0, i = 1, . . . , m

Note: The last step is not always trivial.

TMA947 – Lecture 7 Convex duality 33 / 36



Linear programsLinear programs, I

Consider the linear program

f ∗ = infinum cTx, (8a)

subject to Ax = b, (8b)

x ≥ 0, (8c)

where c ∈ R
n, A ∈ R

m×n and b ∈ R
m. If we let X = R

n
+, the Lagrangian

dual problem is

q∗ = supremum bT
µ, (9a)

subject to AT
µ ≤ c, (9b)

µ ∈ R
m (9c)

Why?
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Linear programsLinear programs, II

f ∗ = infinum cTx, (10a)

subject to Ax = b, (10b)

x ≥ 0, (10c)

Lagrangian relax constraint (10b) and get L(x, µ) = cTx + µ
T (b − Ax).

q(µ) = inf
x≥0

{

cTx + µ
T (b − Ax)

}

= bT
µ + inf

x≥0

{

(c − AT
µ)Tx

}

=

{

bT
µ if AT

µ ≤ c,

−∞ otherwise

=⇒ q∗ = supremum bT
µ, (11a)

subject to AT
µ ≤ c, (11b)

µ ∈ R
m (11c)
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QuestionsQuestions for the break

Find f ∗ and q∗ in the following problems when Lagrangian relaxing the
blue constraint. If the problem if infeasible, by definition f ∗ = ∞

f
∗ = min 1/x ,

s.t. x ≤ 0,

x > 0.

(A)

f
∗ = min x ,

s.t. x
2
≤ 0,

x > 0.

(B)

f
∗ = min x1 + x2,

s.t. x1≤ 0,

x1 > 0.

(C)
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