Lecture 12

Lecture 12: Feasible direction methods

Kin Cheong Sou
December 2, 2013

TMA947 — Lecture 12 Lecture 12: Feasible direction methods



Feasible-direction methods, | Intro

» Consider the problem to find

f* = infimum f(x), (1a)
subject to x € X, (1b)

X C R" nonempty, closed and convex; f : R" — R is Clon X

» A natural idea is to mimic the line search methods for
unconstrained problems.

» However, most methods for (1) manipulate (that is, relax) the
constraints defining X; in some cases even such that the
sequence {xx} is infeasible until convergence. Why?

TMA947 — Lecture 12 Lecture 12: Feasible direction methods



Feasible-direction methods, | Intro

» Consider a constraint “gij(x) < b;,” where g; is nonlinear
» Checking whether p is a feasible direction at x, or what the
maximum feasible step from x in the direction of p is, is very

difficult

» For which step length o > 0 is gj(x + ap) = b;? This is a
nonlinear equation in a!

» Assuming that X is polyhedral, these problems are not present

» Note: KKT always necessary for a local min for polyhedral
sets; methods will find such points

TMA947 — Lecture 12 Lecture 12: Feasible direction methods



Feasible-direction descent methods Intro

Step 0. Determine a starting point xg € R” such that
xg€ X. Set k:=0

Step 1. Determine a search direction p, € R" such that p, is
a feasible descent direction

Step 2. Determine a step length o > 0 such that
f(xk + akpy) < f(xk) and xx + axp, € X

Step 3. Let xy11 1= Xk + Qxpy

Step 4. If a termination criterion is fulfilled, then stop!
Otherwise, let k := k + 1 and go to Step 1

TMA947 — Lecture 12 Lecture 12: Feasible direction methods



Notes Intro

» Similar form as the general method for unconstrained
optimization

> Just as local as methods for unconstrained optimization

» Search directions typically based on the approximation of f—a
“relaxation”

» Search direction often of the form p, =y, — xj, where
Y, € X solves an approximate problem

» Line searches similar; note the maximum step

» Termination criteria and descent based on first-order
optimality and/or fixed-point theory (p, ~ 0")

TMA947 — Lecture 12 Lecture 12: Feasible direction methods



LP-based algorithm, |: The Frank—Wolfe method Frank—Wolfe

» The Frank—Wolfe method is based on a first-order
approximation of f around the iterate x,. This means that
the relaxed problems are LPs, which can then be solved by
using the Simplex method

» Remember the first-order optimality condition: /If x* € X is a
local minimum of f on X then

VF(x*)T(x —x*) >0, x € X,
holds

» Remember also the following equivalent statement:

s f*T ) —
mn)l(legumv (x) ' (x—=x")=0

TMA947 — Lecture 12 Lecture 12: Feasible direction methods



LP-based algorithm, |: The Frank—Wolfe method Frank—Wolfe

» Follows that if, given an iterate x, € X,

minimum V£ (x,)T(y — xx) <0,
yeX

and y, is an optimal solution to this LP problem, then the
direction of p, := y, — xy is a feasible descent direction with
respect to f at x

» Search direction towards an extreme point of X [one that is
optimal in the LP over X with costs ¢ = Vf(xy)]

» This is the basis of the Frank—Wolfe algorithm

TMA947 — Lecture 12 Lecture 12: Feasible direction methods



LP-based algorithm, |: The Frank—Wolfe method Frank—Wolfe

» We assume that X is bounded in order to ensure that the LP
always has a finite optimal solution. The algorithm can be
extended to work for unbounded polyhedra

» The search directions then are either towards an extreme
point (finite optimal solution to LP) or in the direction of an
extreme ray of X (unbounded solution to LP)

» Both cases identified in the Simplex method

TMA947 — Lecture 12 Lecture 12: Feasible direction methods



The search-direction problem

Frank—Wolfe

20

15

&
T

TMA947 — Lecture 12

Lecture 12: Feasible direction methods

10




Algorithm description, Frank—Wolfe Frank—Wolfe

Step 0. Find x¢ € X (for example any extreme point in X).
Set k:=0

Step 1. Find an optimal solution y, to the problem to

miI;ier)réize zi(y) = VF(x) T (y — xk) (2)

Let p, ‘= yx — Xk be the search direction

Step 2. Approximately solve the problem to minimize
f(xk + apy) over a € [0,1]. Let ax be the step
length

Step 3. Let Xk41 = Xk + Qppy

Step 4. If, for example, zx(y,) or ay is close to zero, then
terminate! Otherwise, let k := k+1 and go to Step 1

TMA947 — Lecture 12 Lecture 12: Feasible direction methods



*Convergence Frank—Wolfe

» Suppose X C R" nonempty polytope; f in C! on X

> In Step 2 of the Frank—Wolfe algorithm, we either use an
exact line search or the Armijo step length rule

» Then: the sequence {x\} is bounded and every limit point (at
least one exists) is stationary;

» {f(xk)} is descending, and therefore has a limit;
> 2ik(yi) = 0 (VE(xk)"pyc — 0)

» If f is convex on X, then every limit point is globally optimal

TMA947 — Lecture 12 Lecture 12: Feasible direction methods



Franke-Wolfe convergence Frank—Wolfe

TMA947 — Lecture 12 Lecture 12: Fe: e direction mef



The convex case: Lower bounds Frank—Wolfe

» Remember the following characterization of convex functions
in Cl on X: f is convex on X <=

fly) > f(x)+ VF(x)"(y —x), x,yeX

» Suppose f is convex on X. Then, f(xx) + zk(y,) < £* (lower
bound, LBD), and f(xk) + zk(yx) = f(xk) if and only if xx is
globally optimal. A relaxation—cf. the Relaxation Theorem!

» Utilize the lower bound as follows: we know that
f* e [f(xk) + zx(yx), f(xk)]. Store the best LBD, and check
in Step 4 whether [f(xx) — LBD]/|LBD]| is small, and if so
terminate

TMA947 — Lecture 12 Lecture 12: Feasible direction methods



Notes Frank—Wolfe

» Frank—Wolfe uses linear approximations—works best for
almost linear problems

» For highly nonlinear problems, the approximation is bad—the
optimal solution may be far from an extreme point

» In order to find a near-optimum requires many iterations—the
algorithm is slow

» Another reason is that the information generated (the extreme
points) is forgotten. If we keep the linear subproblem, we can
do much better by storing and utilizing this information

TMA947 — Lecture 12 Lecture 12: Feasible direction methods



LP-based algorithm, Il: Simplicial decomposition

» Remember the Representation Theorem (special case for
polytopes): Let P ={x € R" | Ax=b; x > 0"}, be
nonempty and bounded, and V = {v,... vK} be the set of
extreme points of P. Every x € P can be represented as a
convex combination of the points in V, that is,

K
X = E %
i=1

for some a1, . ..,ay > 0 such that Zlel a; =1

TMA947 — Lecture 12 Lecture 12: Feasible direction methods



LP-based algorithm, Il: Simplicial decomposition

» The idea behind the Simplicial decomposition method is to
generate the extreme points v’ which can be used to describe
an optimal solution x*, that is, the vectors v’ with positive

weights a; in
K
x* = g %
i=1

» The process is still iterative: we generate a “working set” P
of indices i, optimize the function f over the convex hull of
the known points, and check for stationarity and/or generate
a new extreme point

TMA947 — Lecture 12 Lecture 12: Feasible direction methods



Algorithm description, Simplicial decomposition

Step 0. Find xg € X, for example any extreme point in X.
Set k:=0. Let Py:=10

Step 1. Let y* be an optimal solution to the LP problem

minimize z,(y) = VF(xx)T(y — xk)
yeX

Let Pry1 :=Pr U {k}

TMA947 — Lecture 12 Lecture 12: Feasible direction methods



Algorithm description, Simplicial decomposition SD

Step 2. Let (uk,Vk+1) be an approximate solution to the
restricted master problem (RMP) to

minimize  f | uxp + Z viy' |, (32)
(o) i€Pent
subject to p+ . vi=1, (3b)
1€Prs1

w,vi >0, i € Prs1 (3¢)

Step 3. Let Xki1 = pkt1Xk + 2iep,,, Vki1)iy'

Step 4. If, for example, zx(y*) is close to zero, or if
Pi+1 = Pk, then terminate! Otherwise, let
k:=k+ 1 and go to Step 1

TMA947 — Lecture 12 Lecture 12: Feasible direction methods



Algorithm description, Simplicial decomposition SD

» This basic algorithm keeps all information generated, and adds
one new extreme point in every iteration

» An alternative is to drop columns (vectors y') that have
received a zero (or, low) weight, or to keep only a maximum
number of vectors

» Special case: maximum number of vectors kept = 1 = the
Frank-Wolfe algorithm!

» We obviously improve the Frank—Wolfe algorithm by utilizing
more information

» Unfortunately, we cannot do line search!

TMA947 — Lecture 12 Lecture 12: Feasible direction methods



Practical simplicial decomposition SD

» In theory, SD will converge after a finite number of iterations,
as there are finite many extreme points.

» However, the restricted master problem is harder to solve
when the set Py is large. Extreme cases: |Pyx| =1,
Frank-Wolfe and line search, easy! If P, contains all extreme
points, the restricted is just the original problem in disguise.

» We fix this by in each iteration also removing some extreme
points from P. Practical rules.
» Drop y' if v; = 0.
» Limit the size of |Px| = r. (Again, r = 1 is Frank-Wolfe.)

TMA947 — Lecture 12 Lecture 12: Feasible direction methods



Simplicial decomposition illustration

Figure : Example implementation of SD. Starting at xo = (1, —1)", and
with Py as the extreme points at (2,0)T, |Py| < 2.

TMA947 — Lecture 12 Lecture 12: Feasible direction metl



Simplicial decomposition illustration

Figure : Example implementation of SD. Starting at xo = (1, —1)", and
with Py as the extreme points at (2,0)T, |Py| < 2.

TMA947 — Lecture 12 Lecture 12: Feasible direction metl



Simplicial decomposition illustration

Figure : Example implementation of SD. Starting at xo = (1, —1)", and
with Py as the extreme points at (2,0)T, |Py| < 2.

TMA947 — Lecture 12 Lecture 12: Feasible direction metl



Simplicial decomposition illustration

Figure : Example implementation of SD. Starting at xo = (1, —1)", and
with Py as the extreme points at (2,0)T, |Py| < 2.

TMA947 — Lecture 12 Lecture 12: Feasible direction metl



Simplicial decomposition illustration

Figure : Example implementation of SD. Starting at xo = (1, —1)", and
with Py as the extreme points at (2,0)T, |Py| < 2.

TMA947 — Lecture 12 Lecture 12: Feasible direction metl



*Convergence

> It does at least as well as the Frank—Wolfe algorithm: line
segment [xx, y] feasible in RMP

» If x* unique then convergence is finite if the RMPs are solved
exactly, and the maximum number of vectors kept is > the
number needed to span x*

» Much more efficient than the Frank—Wolfe algorithm in
practice (consider the above FW example!)

» We can solve the RMPs efficiently, since the constraints are
simple

TMA947 — Lecture 12 Lecture 12: Feasible direction methods



The gradient projection algorithm Gradient projection

» The gradient projection algorithm is based on the projection
characterization of a stationary point: x* € X is a stationary
point if and only if, for any a > 0,

x* = Projx[x* — aVf(x")]

TMA947 — Lecture 12 Lecture 12: Feasible direction methods



Gradient projection algorithms Gradient projection

» Let p:= Projx[x — aVf(x)] — x, for any @ > 0. Then, if and
only if x is non-stationary, p is a feasible descent direction of
f at x

» The gradient projection algorithm is normally stated such that
the line search is done over the projection arc, that is, we find
a step length ay for which

Xkt1 = Projx[xx — auVF(xk)], k=1,... (4

has a good objective value. Use the Armijo rule to determine
Q

» Note: gradient projection becomes steepest descent with
Armijo line search when X = R"!

TMA947 — Lecture 12 Lecture 12: Feasible direction methods



Gradient projection algorithms Gradient projection

xx —aVif(xg)

Xk~ (8/2)V ()

xk — (a/4)VF(xk)

TMA947 — Lecture 12 Lecture 12: Feasible direction methods



Gradient projection algorithms Gradient projection

v

Bottleneck: how can we compute projections?

> In general, we study the KKT conditions of the system and
apply a simplex-like method.

» If we have a specially structured feasible polyhedron,
projections may be easier to compute.

» Particular case: the unit simplex (the feasible set of the SD
subproblems).

TMA947 — Lecture 12 Lecture 12: Feasible direction methods



Easy projections Gradient projection

» Example: the feasible set is
S={xeR"|0<x<1,i=1,...,n}
» Then Projs(x) = z, where

0, x; <0,
zi=4q%, 0<x <1
1, 1<x,

fori=1,...,n.

» Exercise: prove this by applying the varitional inequality (or
KKT conditions) to the problem

. 1
minzes s |x — 2|/

TMA947 — Lecture 12 Lecture 12: Feasible direction methods



*Convergence, | Gradient projection

>

>

v

v

X C R" nonempty, closed, convex; f € Clon X;

for the starting point xo € X it holds that the level set
levs (f(xo)) intersected with X is bounded

In the algorithm (5), the step length « is given by the Armijo
step length rule along the projection arc

Then: the sequence {x} is bounded;
every limit point of {xy} is stationary;
{f(xx)} descending, lower bounded, hence convergent

Convergence arguments similar to steepest descent one

TMA947 — Lecture 12 Lecture 12: Feasible direction methods



*Convergence, |l Gradient projection

» Assume: X C R" nonempty, closed, convex;
» f e ClonX;f convex;
> an optimal solution x* exists

> In the algorithm (5), the step length a is given by the Armijo
step length rule along the projection arc

» Then: the sequence {x\} converges to an optimal solution

> Note: with X = R"” = convergence of steepest descent for
convex problems with optimal solutions!

TMA947 — Lecture 12 Lecture 12: Feasible direction methods



An illustration of FW vs. SD, | Gradient projection

>

A large-scale nonlinear network flow problem which is used to
estimate traffic flows in cities

» Model over the small city of Sioux Falls in North Dakota,
USA; 24 nodes, 76 links, and 528 pairs of origin and
destination

> Three algorithms for the RMPs were tested—a Newton
method and two gradient projection methods. MATLAB
implementation.

» Remarkable difference—The Frank—Wolfe method suffers from
very small steps being taken. Why? Many extreme points
active = many routes used

TMA947 — Lecture 12 Lecture 12: Feasible direction methods



An illustration of FW vs. SD, |

Gradient projection

Max relative objective function error

10 T T T T T T :
\ AN SD/Grad. proj. 1
. - — SD/Grad. proj. 2
107 |\ N - - SDINewton |
N v — - Frank-Wolfe
107 L - ~ ]

20 30 40

50
CPU time (s)

90 100

Figure : The performance of SD vs. FW on the Sioux Falls network

A947 — Lecture 12

Lecture 12: Fea




	Introduction
	Method attempts
	Frank--Wolfe method
	SD
	Gradient projection

