
Lecture 12

Lecture 12: Feasible direction methods

Kin Cheong Sou
December 2, 2013

TMA947 – Lecture 12 Lecture 12: Feasible direction methods 1 / 1

Feasible-direction methods, I Intro

◮ Consider the problem to find

f ∗ = infimum f (x), (1a)

subject to x ∈ X , (1b)

X ⊆ R
n nonempty, closed and convex; f : Rn → R is C 1 on X

◮ A natural idea is to mimic the line search methods for
unconstrained problems.

◮ However, most methods for (1) manipulate (that is, relax) the
constraints defining X ; in some cases even such that the
sequence {xk} is infeasible until convergence. Why?

TMA947 – Lecture 12 Lecture 12: Feasible direction methods 3 / 1

Feasible-direction methods, I Intro

◮ Consider a constraint “gi (x) ≤ bi ,” where gi is nonlinear

◮ Checking whether p is a feasible direction at x , or what the
maximum feasible step from x in the direction of p is, is very
difficult

◮ For which step length α > 0 is gi (x + αp) = bi? This is a
nonlinear equation in α!

◮ Assuming that X is polyhedral, these problems are not present

◮ Note: KKT always necessary for a local min for polyhedral
sets; methods will find such points

TMA947 – Lecture 12 Lecture 12: Feasible direction methods 4 / 1

Feasible-direction descent methods Intro

Step 0. Determine a starting point x0 ∈ R
n such that

x0 ∈ X . Set k := 0

Step 1. Determine a search direction pk ∈ R
n such that pk is

a feasible descent direction

Step 2. Determine a step length αk > 0 such that
f (xk + αkpk) < f (xk) and xk + αkpk ∈ X

Step 3. Let xk+1 := xk + αkpk

Step 4. If a termination criterion is fulfilled, then stop!
Otherwise, let k := k + 1 and go to Step 1

TMA947 – Lecture 12 Lecture 12: Feasible direction methods 5 / 1

Notes Intro

◮ Similar form as the general method for unconstrained
optimization

◮ Just as local as methods for unconstrained optimization

◮ Search directions typically based on the approximation of f—a
“relaxation”

◮ Search direction often of the form pk = yk − xk , where
yk ∈ X solves an approximate problem

◮ Line searches similar; note the maximum step

◮ Termination criteria and descent based on first-order
optimality and/or fixed-point theory (pk ≈ 0n)

TMA947 – Lecture 12 Lecture 12: Feasible direction methods 6 / 1

LP-based algorithm, I: The Frank–Wolfe method Frank–Wolfe

◮ The Frank–Wolfe method is based on a first-order
approximation of f around the iterate xk . This means that
the relaxed problems are LPs, which can then be solved by
using the Simplex method

◮ Remember the first-order optimality condition: If x∗ ∈ X is a
local minimum of f on X then

∇f (x∗)T(x − x∗) ≥ 0, x ∈ X ,

holds

◮ Remember also the following equivalent statement:

minimum
x∈X

∇f (x∗)T(x − x∗) = 0

TMA947 – Lecture 12 Lecture 12: Feasible direction methods 9 / 1

LP-based algorithm, I: The Frank–Wolfe method Frank–Wolfe

◮ Follows that if, given an iterate xk ∈ X ,

minimum
y∈X

∇f (xk)
T(y − xk) < 0,

and yk is an optimal solution to this LP problem, then the
direction of pk := yk − xk is a feasible descent direction with
respect to f at x

◮ Search direction towards an extreme point of X [one that is
optimal in the LP over X with costs c = ∇f (xk)]

◮ This is the basis of the Frank–Wolfe algorithm

TMA947 – Lecture 12 Lecture 12: Feasible direction methods 10 / 1

LP-based algorithm, I: The Frank–Wolfe method Frank–Wolfe

◮ We assume that X is bounded in order to ensure that the LP
always has a finite optimal solution. The algorithm can be
extended to work for unbounded polyhedra

◮ The search directions then are either towards an extreme
point (finite optimal solution to LP) or in the direction of an
extreme ray of X (unbounded solution to LP)

◮ Both cases identified in the Simplex method

TMA947 – Lecture 12 Lecture 12: Feasible direction methods 11 / 1

The search-direction problem Frank–Wolfe

−5 0 5 10
−5

0

5

10

15

20

xk

yk

pk

∇f (xk)

X

TMA947 – Lecture 12 Lecture 12: Feasible direction methods 12 / 1

Algorithm description, Frank–Wolfe Frank–Wolfe

Step 0. Find x0 ∈ X (for example any extreme point in X).
Set k := 0

Step 1. Find an optimal solution yk to the problem to

minimize
y∈X

zk(y) := ∇f (xk)
T(y − xk) (2)

Let pk := yk − xk be the search direction

Step 2. Approximately solve the problem to minimize
f (xk + αpk) over α ∈ [0, 1]. Let αk be the step
length

Step 3. Let xk+1 := xk + αkpk

Step 4. If, for example, zk(yk) or αk is close to zero, then
terminate! Otherwise, let k := k+1 and go to Step 1

TMA947 – Lecture 12 Lecture 12: Feasible direction methods 13 / 1

∗Convergence Frank–Wolfe

◮ Suppose X ⊂ R
n nonempty polytope; f in C 1 on X

◮ In Step 2 of the Frank–Wolfe algorithm, we either use an
exact line search or the Armijo step length rule

◮ Then: the sequence {xk} is bounded and every limit point (at
least one exists) is stationary;

◮ {f (xk)} is descending, and therefore has a limit;

◮ zk(yk) → 0 (∇f (xk)
Tpk → 0)

◮ If f is convex on X , then every limit point is globally optimal

TMA947 – Lecture 12 Lecture 12: Feasible direction methods 14 / 1

Franke-Wolfe convergence Frank–Wolfe

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

−2 −1.8 −1.6 −1.4 −1.2 −1 −0.8
1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

TMA947 – Lecture 12 Lecture 12: Feasible direction methods 15 / 1

The convex case: Lower bounds Frank–Wolfe

◮ Remember the following characterization of convex functions
in C 1 on X : f is convex on X ⇐⇒

f (y) ≥ f (x) +∇f (x)T(y − x), x , y ∈ X

◮ Suppose f is convex on X . Then, f (xk) + zk(yk) ≤ f ∗ (lower
bound, LBD), and f (xk) + zk(yk) = f (xk) if and only if xk is
globally optimal. A relaxation—cf. the Relaxation Theorem!

◮ Utilize the lower bound as follows: we know that
f ∗ ∈ [f (xk) + zk(yk), f (xk)]. Store the best LBD, and check
in Step 4 whether [f (xk)− LBD]/|LBD| is small, and if so
terminate

TMA947 – Lecture 12 Lecture 12: Feasible direction methods 16 / 1

Notes Frank–Wolfe

◮ Frank–Wolfe uses linear approximations—works best for
almost linear problems

◮ For highly nonlinear problems, the approximation is bad—the
optimal solution may be far from an extreme point

◮ In order to find a near-optimum requires many iterations—the
algorithm is slow

◮ Another reason is that the information generated (the extreme
points) is forgotten. If we keep the linear subproblem, we can
do much better by storing and utilizing this information

TMA947 – Lecture 12 Lecture 12: Feasible direction methods 17 / 1

LP-based algorithm, II: Simplicial decomposition SD

◮ Remember the Representation Theorem (special case for
polytopes): Let P = { x ∈ R

n | Ax = b; x ≥ 0n}, be
nonempty and bounded, and V = {v1, . . . , vK} be the set of
extreme points of P. Every x ∈ P can be represented as a
convex combination of the points in V , that is,

x =
K
∑

i=1

αiv
i ,

for some α1, . . . , αk ≥ 0 such that
∑

K

i=1 αi = 1

TMA947 – Lecture 12 Lecture 12: Feasible direction methods 19 / 1

LP-based algorithm, II: Simplicial decomposition SD

◮ The idea behind the Simplicial decomposition method is to
generate the extreme points v i which can be used to describe
an optimal solution x∗, that is, the vectors v i with positive
weights αi in

x∗ =

K
∑

i=1

αiv
i

◮ The process is still iterative: we generate a “working set” Pk

of indices i , optimize the function f over the convex hull of
the known points, and check for stationarity and/or generate
a new extreme point

TMA947 – Lecture 12 Lecture 12: Feasible direction methods 20 / 1

Algorithm description, Simplicial decomposition SD

Step 0. Find x0 ∈ X , for example any extreme point in X .
Set k := 0. Let P0 := ∅

Step 1. Let yk be an optimal solution to the LP problem

minimize
y∈X

zk(y) := ∇f (xk)
T(y − xk)

Let Pk+1 := Pk ∪ {k}

TMA947 – Lecture 12 Lecture 12: Feasible direction methods 21 / 1

Algorithm description, Simplicial decomposition SD

Step 2. Let (µk ,νk+1) be an approximate solution to the
restricted master problem (RMP) to

minimize
(µ,ν)

f



µxk +
∑

i∈Pk+1

νiy
i



 , (3a)

subject to µ+
∑

i∈Pk+1

νi = 1, (3b)

µ, νi ≥ 0, i ∈ Pk+1 (3c)

Step 3. Let xk+1 := µk+1xk +
∑

i∈Pk+1
(νk+1)iy

i

Step 4. If, for example, zk(y
k) is close to zero, or if

Pk+1 = Pk , then terminate! Otherwise, let
k := k + 1 and go to Step 1

TMA947 – Lecture 12 Lecture 12: Feasible direction methods 22 / 1

Algorithm description, Simplicial decomposition SD

◮ This basic algorithm keeps all information generated, and adds
one new extreme point in every iteration

◮ An alternative is to drop columns (vectors y i) that have
received a zero (or, low) weight, or to keep only a maximum
number of vectors

◮ Special case: maximum number of vectors kept = 1 =⇒ the
Frank–Wolfe algorithm!

◮ We obviously improve the Frank–Wolfe algorithm by utilizing
more information

◮ Unfortunately, we cannot do line search!

TMA947 – Lecture 12 Lecture 12: Feasible direction methods 23 / 1

Practical simplicial decomposition SD

◮ In theory, SD will converge after a finite number of iterations,
as there are finite many extreme points.

◮ However, the restricted master problem is harder to solve
when the set Pk is large. Extreme cases: |Pk | = 1,
Frank-Wolfe and line search, easy! If Pk contains all extreme
points, the restricted is just the original problem in disguise.

◮ We fix this by in each iteration also removing some extreme
points from P. Practical rules.

◮ Drop y i if νi = 0.
◮ Limit the size of |Pk | = r . (Again, r = 1 is Frank-Wolfe.)

TMA947 – Lecture 12 Lecture 12: Feasible direction methods 24 / 1

Simplicial decomposition illustration SD

Figure : Example implementation of SD. Starting at x0 = (1,−1)T, and
with P0 as the extreme points at (2, 0)T, |Pk | ≤ 2.

TMA947 – Lecture 12 Lecture 12: Feasible direction methods 25 / 1

Simplicial decomposition illustration SD

Figure : Example implementation of SD. Starting at x0 = (1,−1)T, and
with P0 as the extreme points at (2, 0)T, |Pk | ≤ 2.

TMA947 – Lecture 12 Lecture 12: Feasible direction methods 26 / 1

Simplicial decomposition illustration SD

Figure : Example implementation of SD. Starting at x0 = (1,−1)T, and
with P0 as the extreme points at (2, 0)T, |Pk | ≤ 2.

TMA947 – Lecture 12 Lecture 12: Feasible direction methods 27 / 1

Simplicial decomposition illustration SD

Figure : Example implementation of SD. Starting at x0 = (1,−1)T, and
with P0 as the extreme points at (2, 0)T, |Pk | ≤ 2.

TMA947 – Lecture 12 Lecture 12: Feasible direction methods 28 / 1

Simplicial decomposition illustration SD

Figure : Example implementation of SD. Starting at x0 = (1,−1)T, and
with P0 as the extreme points at (2, 0)T, |Pk | ≤ 2.

TMA947 – Lecture 12 Lecture 12: Feasible direction methods 29 / 1

∗Convergence SD

◮ It does at least as well as the Frank–Wolfe algorithm: line
segment [xk , y

k] feasible in RMP

◮ If x∗ unique then convergence is finite if the RMPs are solved
exactly, and the maximum number of vectors kept is ≥ the
number needed to span x∗

◮ Much more efficient than the Frank–Wolfe algorithm in
practice (consider the above FW example!)

◮ We can solve the RMPs efficiently, since the constraints are
simple

TMA947 – Lecture 12 Lecture 12: Feasible direction methods 30 / 1

The gradient projection algorithm Gradient projection

◮ The gradient projection algorithm is based on the projection
characterization of a stationary point: x∗ ∈ X is a stationary
point if and only if, for any α > 0,

x∗ = ProjX [x
∗ − α∇f (x∗)]

�
�
�

�
�
�

X

y

x∗ −∇f (x∗)

x∗

NX (x
∗)

TMA947 – Lecture 12 Lecture 12: Feasible direction methods 32 / 1

Gradient projection algorithms Gradient projection

◮ Let p := ProjX [x − α∇f (x)]− x , for any α > 0. Then, if and
only if x is non-stationary, p is a feasible descent direction of
f at x

◮ The gradient projection algorithm is normally stated such that
the line search is done over the projection arc, that is, we find
a step length αk for which

xk+1 := ProjX [xk − αk∇f (xk)], k = 1, . . . (4)

has a good objective value. Use the Armijo rule to determine
αk

◮ Note: gradient projection becomes steepest descent with
Armijo line search when X = R

n!

TMA947 – Lecture 12 Lecture 12: Feasible direction methods 33 / 1

Gradient projection algorithms Gradient projection

X

xk

xk − ᾱ∇f (xk)

xk − (ᾱ/2)∇f (xk)

xk − (ᾱ/4)∇f (xk)

xk − α∇f (xk)

TMA947 – Lecture 12 Lecture 12: Feasible direction methods 34 / 1

Gradient projection algorithms Gradient projection

◮ Bottleneck: how can we compute projections?

◮ In general, we study the KKT conditions of the system and
apply a simplex-like method.

◮ If we have a specially structured feasible polyhedron,
projections may be easier to compute.

◮ Particular case: the unit simplex (the feasible set of the SD
subproblems).

TMA947 – Lecture 12 Lecture 12: Feasible direction methods 35 / 1

Easy projections Gradient projection

◮ Example: the feasible set is
S = {x ∈ R

n | 0 ≤ xi ≤ 1, i = 1, . . . , n}.

◮ Then ProjS (x) = z, where

zi =











0, xi < 0,

xi , 0 ≤ xi ≤ 1

1, 1 < xi ,

for i = 1, . . . , n.

◮ Exercise: prove this by applying the varitional inequality (or
KKT conditions) to the problem

minz∈S
1

2
‖x − z‖2

.

TMA947 – Lecture 12 Lecture 12: Feasible direction methods 36 / 1

∗Convergence, I Gradient projection

◮ X ⊆ R
n nonempty, closed, convex; f ∈ C 1 on X ;

◮ for the starting point x0 ∈ X it holds that the level set
levf (f (x0)) intersected with X is bounded

◮ In the algorithm (5), the step length αk is given by the Armijo
step length rule along the projection arc

◮ Then: the sequence {xk} is bounded;

◮ every limit point of {xk} is stationary;

◮ {f (xk)} descending, lower bounded, hence convergent

◮ Convergence arguments similar to steepest descent one

TMA947 – Lecture 12 Lecture 12: Feasible direction methods 37 / 1

∗Convergence, II Gradient projection

◮ Assume: X ⊆ R
n nonempty, closed, convex;

◮ f ∈ C 1 on X ; f convex;

◮ an optimal solution x∗ exists

◮ In the algorithm (5), the step length αk is given by the Armijo
step length rule along the projection arc

◮ Then: the sequence {xk} converges to an optimal solution

◮ Note: with X = R
n =⇒ convergence of steepest descent for

convex problems with optimal solutions!

TMA947 – Lecture 12 Lecture 12: Feasible direction methods 38 / 1

An illustration of FW vs. SD, I Gradient projection

◮ A large-scale nonlinear network flow problem which is used to
estimate traffic flows in cities

◮ Model over the small city of Sioux Falls in North Dakota,
USA; 24 nodes, 76 links, and 528 pairs of origin and
destination

◮ Three algorithms for the RMPs were tested—a Newton
method and two gradient projection methods. MATLAB
implementation.

◮ Remarkable difference—The Frank–Wolfe method suffers from
very small steps being taken. Why? Many extreme points
active = many routes used

TMA947 – Lecture 12 Lecture 12: Feasible direction methods 39 / 1

An illustration of FW vs. SD, I Gradient projection

0 10 20 30 40 50 60 70 80 90 100
10

−11

10
−10

10
−9

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Sioux Falls network

CPU time (s)

M
ax

 r
el

at
iv

e
ob

je
ct

iv
e

fu
nc

tio
n

er
ro

r

SD/Grad. proj. 1
SD/Grad. proj. 2
SD/Newton
Frank−Wolfe

Figure : The performance of SD vs. FW on the Sioux Falls network

TMA947 – Lecture 12 Lecture 12: Feasible direction methods 40 / 1

	Introduction
	Method attempts
	Frank--Wolfe method
	SD
	Gradient projection

