Lecture 12

Lecture 12: Feasible direction methods

Kin Cheong Sou

December 2, 2013

- Consider the problem to find

$$
\begin{align*}
f^{*}= & \text { infimum } f(x) \tag{1a}\\
& \text { subject to } x \in X \tag{1b}
\end{align*}
$$

$X \subseteq \mathbb{R}^{n}$ nonempty, closed and convex; $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is C^{1} on X

- A natural idea is to mimic the line search methods for unconstrained problems.
- However, most methods for (1) manipulate (that is, relax) the constraints defining X; in some cases even such that the sequence $\left\{x_{k}\right\}$ is infeasible until convergence. Why?
- Consider a constraint " $g_{i}(x) \leq b_{i}$," where g_{i} is nonlinear
- Checking whether p is a feasible direction at x, or what the maximum feasible step from x in the direction of p is, is very difficult
- For which step length $\alpha>0$ is $g_{i}(x+\alpha p)=b_{i}$? This is a nonlinear equation in α !
- Assuming that X is polyhedral, these problems are not present
- Note: KKT always necessary for a local min for polyhedral sets; methods will find such points

Step 0. Determine a starting point $x_{0} \in \mathbb{R}^{n}$ such that $x_{0} \in X$. Set $k:=0$

Step 1. Determine a search direction $p_{k} \in \mathbb{R}^{n}$ such that p_{k} is a feasible descent direction

Step 2. Determine a step length $\alpha_{k}>0$ such that $f\left(x_{k}+\alpha_{k} p_{k}\right)<f\left(x_{k}\right)$ and $x_{k}+\alpha_{k} p_{k} \in X$

Step 3. Let $x_{k+1}:=x_{k}+\alpha_{k} p_{k}$
Step 4. If a termination criterion is fulfilled, then stop! Otherwise, let $k:=k+1$ and go to Step 1

- Similar form as the general method for unconstrained optimization
- Just as local as methods for unconstrained optimization
- Search directions typically based on the approximation of f-a "relaxation"
- Search direction often of the form $p_{k}=y_{k}-x_{k}$, where $y_{k} \in X$ solves an approximate problem
- Line searches similar; note the maximum step
- Termination criteria and descent based on first-order optimality and/or fixed-point theory ($p_{k} \approx \mathbf{0}^{n}$)
- The Frank-Wolfe method is based on a first-order approximation of f around the iterate x_{k}. This means that the relaxed problems are LPs, which can then be solved by using the Simplex method
- Remember the first-order optimality condition: If $x^{*} \in X$ is a local minimum of f on X then

$$
\nabla f\left(x^{*}\right)^{\mathrm{T}}\left(x-x^{*}\right) \geq 0, \quad x \in X
$$

holds

- Remember also the following equivalent statement:

$$
\underset{x \in X}{\operatorname{minimum}} \nabla f\left(x^{*}\right)^{\mathrm{T}}\left(x-x^{*}\right)=0
$$

- Follows that if, given an iterate $x_{k} \in X$,

$$
\underset{\mathbf{y} \in X}{\operatorname{minimum}} \nabla f\left(x_{k}\right)^{\mathrm{T}}\left(y-x_{k}\right)<0
$$

and y_{k} is an optimal solution to this LP problem, then the direction of $p_{k}:=y_{k}-x_{k}$ is a feasible descent direction with respect to f at x

- Search direction towards an extreme point of X [one that is optimal in the LP over X with costs $c=\nabla f\left(x_{k}\right)$]
- This is the basis of the Frank-Wolfe algorithm
- We assume that X is bounded in order to ensure that the LP always has a finite optimal solution. The algorithm can be extended to work for unbounded polyhedra
- The search directions then are either towards an extreme point (finite optimal solution to LP) or in the direction of an extreme ray of X (unbounded solution to LP)
- Both cases identified in the Simplex method

The search-direction problem
Frank-Wolfe

Step 0 . Find $x_{0} \in X$ (for example any extreme point in X). Set $k:=0$

Step 1. Find an optimal solution y_{k} to the problem to

$$
\begin{equation*}
\underset{\mathbf{y} \in X}{\operatorname{minimize}} z_{k}(y):=\nabla f\left(x_{k}\right)^{\mathrm{T}}\left(y-x_{k}\right) \tag{2}
\end{equation*}
$$

Let $p_{k}:=y_{k}-x_{k}$ be the search direction
Step 2. Approximately solve the problem to minimize $f\left(x_{k}+\alpha p_{k}\right)$ over $\alpha \in[0,1]$. Let α_{k} be the step length
Step 3. Let $x_{k+1}:=x_{k}+\alpha_{k} p_{k}$
Step 4. If, for example, $z_{k}\left(y_{k}\right)$ or α_{k} is close to zero, then terminate! Otherwise, let $k:=k+1$ and go to Step 1

- Suppose $X \subset \mathbb{R}^{n}$ nonempty polytope; f in C^{1} on X
- In Step 2 of the Frank-Wolfe algorithm, we either use an exact line search or the Armijo step length rule
- Then: the sequence $\left\{x_{k}\right\}$ is bounded and every limit point (at least one exists) is stationary;
- $\left\{f\left(x_{k}\right)\right\}$ is descending, and therefore has a limit;
- $z_{k}\left(y_{k}\right) \rightarrow 0\left(\nabla f\left(x_{k}\right)^{\mathrm{T}} p_{k} \rightarrow 0\right)$
- If f is convex on X, then every limit point is globally optimal

- Remember the following characterization of convex functions in C^{1} on $X: f$ is convex on $X \Longleftrightarrow$

$$
f(y) \geq f(x)+\nabla f(x)^{\mathrm{T}}(y-x), \quad x, y \in X
$$

- Suppose f is convex on X. Then, $f\left(x_{k}\right)+z_{k}\left(y_{k}\right) \leq f^{*}$ (lower bound, LBD), and $f\left(x_{k}\right)+z_{k}\left(y_{k}\right)=f\left(x_{k}\right)$ if and only if x_{k} is globally optimal. A relaxation-cf. the Relaxation Theorem!
- Utilize the lower bound as follows: we know that $f^{*} \in\left[f\left(x_{k}\right)+z_{k}\left(y_{k}\right), f\left(x_{k}\right)\right]$. Store the best LBD, and check in Step 4 whether $\left[f\left(x_{k}\right)-\mathrm{LBD}\right] /|\mathrm{LBD}|$ is small, and if so terminate

Frank-Wolfe

- Frank-Wolfe uses linear approximations-works best for almost linear problems
- For highly nonlinear problems, the approximation is bad-the optimal solution may be far from an extreme point
- In order to find a near-optimum requires many iterations-the algorithm is slow
- Another reason is that the information generated (the extreme points) is forgotten. If we keep the linear subproblem, we can do much better by storing and utilizing this information
- Remember the Representation Theorem (special case for polytopes): Let $P=\left\{x \in \mathbb{R}^{n} \mid A x=b ; x \geq 0^{n}\right\}$, be nonempty and bounded, and $V=\left\{v^{1}, \ldots, v^{K}\right\}$ be the set of extreme points of P. Every $x \in P$ can be represented as a convex combination of the points in V, that is,

$$
x=\sum_{i=1}^{K} \alpha_{i} v^{i}
$$

for some $\alpha_{1}, \ldots, \alpha_{k} \geq 0$ such that $\sum_{i=1}^{K} \alpha_{i}=1$

- The idea behind the Simplicial decomposition method is to generate the extreme points v^{i} which can be used to describe an optimal solution x^{*}, that is, the vectors v^{i} with positive weights α_{i} in

$$
x^{*}=\sum_{i=1}^{K} \alpha_{i} v^{i}
$$

- The process is still iterative: we generate a "working set" \mathcal{P}_{k} of indices i, optimize the function f over the convex hull of the known points, and check for stationarity and/or generate a new extreme point

Step 0 . Find $x_{0} \in X$, for example any extreme point in X. Set $k:=0$. Let $\mathcal{P}_{0}:=\emptyset$

Step 1. Let y^{k} be an optimal solution to the LP problem

$$
\underset{\mathbf{y} \in X}{\operatorname{minimize}} z_{k}(y):=\nabla f\left(x_{k}\right)^{\mathrm{T}}\left(y-x_{k}\right)
$$

Let $\mathcal{P}_{k+1}:=\mathcal{P}_{k} \cup\{k\}$

Step 2. Let $\left(\mu_{k}, \boldsymbol{\nu}_{k+1}\right)$ be an approximate solution to the restricted master problem (RMP) to

$$
\begin{array}{ll}
\underset{(\mu, \nu)}{\operatorname{minimize}} & f\left(\mu x_{k}+\sum_{i \in \mathcal{P}_{k+1}} \nu_{i} y^{i}\right) \\
\text { subject to } & \mu+\sum_{i \in \mathcal{P}_{k+1}} \nu_{i}=1, \\
& \mu, \nu_{i} \geq 0, \quad i \in \mathcal{P}_{k+1} \tag{3c}
\end{array}
$$

Step 3. Let $x_{k+1}:=\mu_{k+1} x_{k}+\sum_{i \in \mathcal{P}_{k+1}}\left(\boldsymbol{\nu}_{k+1}\right)_{i} y^{i}$
Step 4. If, for example, $z_{k}\left(y^{k}\right)$ is close to zero, or if $\mathcal{P}_{k+1}=\mathcal{P}_{k}$, then terminate! Otherwise, let $k:=k+1$ and go to Step 1

- This basic algorithm keeps all information generated, and adds one new extreme point in every iteration
- An alternative is to drop columns (vectors y^{i}) that have received a zero (or, low) weight, or to keep only a maximum number of vectors
- Special case: maximum number of vectors kept $=1 \Longrightarrow$ the Frank-Wolfe algorithm!
- We obviously improve the Frank-Wolfe algorithm by utilizing more information
- Unfortunately, we cannot do line search!
- In theory, SD will converge after a finite number of iterations, as there are finite many extreme points.
- However, the restricted master problem is harder to solve when the set \mathcal{P}_{k} is large. Extreme cases: $\left|\mathcal{P}_{k}\right|=1$, Frank-Wolfe and line search, easy! If \mathcal{P}_{k} contains all extreme points, the restricted is just the original problem in disguise.
- We fix this by in each iteration also removing some extreme points from \mathcal{P}. Practical rules.
- Drop y^{i} if $\nu_{i}=0$.
- Limit the size of $\left|\mathcal{P}_{k}\right|=r$. (Again, $r=1$ is Frank-Wolfe.)

Simplicial decomposition illustration

Figure : Example implementation of SD. Starting at $x_{0}=(1,-1)^{\mathrm{T}}$, and with \mathcal{P}_{0} as the extreme points at $(2,0)^{\mathrm{T}},\left|\mathcal{P}_{k}\right| \leq 2$.

Simplicial decomposition illustration

Figure : Example implementation of SD. Starting at $x_{0}=(1,-1)^{\mathrm{T}}$, and with \mathcal{P}_{0} as the extreme points at $(2,0)^{\mathrm{T}},\left|\mathcal{P}_{k}\right| \leq 2$.

Simplicial decomposition illustration

Figure : Example implementation of SD. Starting at $x_{0}=(1,-1)^{\mathrm{T}}$, and with \mathcal{P}_{0} as the extreme points at $(2,0)^{\mathrm{T}},\left|\mathcal{P}_{k}\right| \leq 2$.

Simplicial decomposition illustration

Figure : Example implementation of SD. Starting at $x_{0}=(1,-1)^{\mathrm{T}}$, and with \mathcal{P}_{0} as the extreme points at $(2,0)^{\mathrm{T}},\left|\mathcal{P}_{k}\right| \leq 2$.

Simplicial decomposition illustration

Figure : Example implementation of SD. Starting at $x_{0}=(1,-1)^{\mathrm{T}}$, and with \mathcal{P}_{0} as the extreme points at $(2,0)^{\mathrm{T}},\left|\mathcal{P}_{k}\right| \leq 2$.

- It does at least as well as the Frank-Wolfe algorithm: line segment $\left[x_{k}, y^{k}\right]$ feasible in RMP
- If x^{*} unique then convergence is finite if the RMPs are solved exactly, and the maximum number of vectors kept is \geq the number needed to span x^{*}
- Much more efficient than the Frank-Wolfe algorithm in practice (consider the above FW example!)
- We can solve the RMPs efficiently, since the constraints are simple
- The gradient projection algorithm is based on the projection characterization of a stationary point: $x^{*} \in X$ is a stationary point if and only if, for any $\alpha>0$,

$$
x^{*}=\operatorname{Proj}_{X}\left[x^{*}-\alpha \nabla f\left(x^{*}\right)\right]
$$

- Let $p:=\operatorname{Proj}_{X}[x-\alpha \nabla f(x)]-x$, for any $\alpha>0$. Then, if and only if x is non-stationary, p is a feasible descent direction of f at x
- The gradient projection algorithm is normally stated such that the line search is done over the projection arc, that is, we find a step length α_{k} for which

$$
\begin{equation*}
x_{k+1}:=\operatorname{Proj}_{X}\left[x_{k}-\alpha_{k} \nabla f\left(x_{k}\right)\right], \quad k=1, \ldots \tag{4}
\end{equation*}
$$

has a good objective value. Use the Armijo rule to determine α_{k}

- Note: gradient projection becomes steepest descent with Armijo line search when $X=\mathbb{R}^{n}$!

Gradient projection algorithms

Gradient projection

- Bottleneck: how can we compute projections?
- In general, we study the KKT conditions of the system and apply a simplex-like method.
- If we have a specially structured feasible polyhedron, projections may be easier to compute.
- Particular case: the unit simplex (the feasible set of the SD subproblems).
- Example: the feasible set is

$$
S=\left\{x \in \mathbb{R}^{n} \mid 0 \leq x_{i} \leq 1, i=1, \ldots, n\right\} .
$$

- Then $\operatorname{Proj}_{S}(x)=z$, where

$$
z_{i}= \begin{cases}0, & x_{i}<0 \\ x_{i}, & 0 \leq x_{i} \leq 1 \\ 1, & 1<x_{i}\end{cases}
$$

for $i=1, \ldots, n$.

- Exercise: prove this by applying the varitional inequality (or KKT conditions) to the problem

$$
\min _{z \in S} \frac{1}{2}\|x-z\|^{2}
$$

- $X \subseteq \mathbb{R}^{n}$ nonempty, closed, convex; $f \in C^{1}$ on X;
- for the starting point $x_{0} \in X$ it holds that the level set $\operatorname{lev}_{f}\left(f\left(x_{0}\right)\right)$ intersected with X is bounded
- In the algorithm (5), the step length α_{k} is given by the Armijo step length rule along the projection arc
- Then: the sequence $\left\{x_{k}\right\}$ is bounded;
- every limit point of $\left\{x_{k}\right\}$ is stationary;
- $\left\{f\left(x_{k}\right)\right\}$ descending, lower bounded, hence convergent
- Convergence arguments similar to steepest descent one
- Assume: $X \subseteq \mathbb{R}^{n}$ nonempty, closed, convex;
- $f \in C^{1}$ on $X ; f$ convex;
- an optimal solution x^{*} exists
- In the algorithm (5), the step length α_{k} is given by the Armijo step length rule along the projection arc
- Then: the sequence $\left\{x_{k}\right\}$ converges to an optimal solution
- Note: with $X=\mathbb{R}^{n} \Longrightarrow$ convergence of steepest descent for convex problems with optimal solutions!
- A large-scale nonlinear network flow problem which is used to estimate traffic flows in cities
- Model over the small city of Sioux Falls in North Dakota, USA; 24 nodes, 76 links, and 528 pairs of origin and destination
- Three algorithms for the RMPs were tested-a Newton method and two gradient projection methods. MATLAB implementation.
- Remarkable difference-The Frank-Wolfe method suffers from very small steps being taken. Why? Many extreme points active $=$ many routes used

Figure : The performance of SD vs. FW on the Sioux Falls network

