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When you answer the questions

Use generally valid theory and methods.
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Question 1

(the simplex method)

Consider the following linear program to find

f ∗ = infimum − 2x1 + x2,

subject to − x1 + x2 ≤ 1,

−x1 + 2x2 ≥ −4,

x1 ≥ 0.

a) Solve this problem using phase I (so that you begin with a unit matrix as(2p)
the first basis) and phase II of the simplex method. If the problem has
an optimal solution, then present the optimal solution in both the original
variables and in the variables used in the standard form. If the problem is
unbounded, then use your calculations to find a direction of unboundedness
in both the original variables and in the variables used in the standard form.

Aid: Utilize the identity

(

a b
c d

)

−1

=
1

ad− bc

(

d −b
−c a

)

.

b) Explain how a perturbation in the right-hand side coefficients affects f ∗.(1p)

Question 2

(Lagrangian duality and convexity)

Consider the problem to find

f ∗ = infimum (x1 − 1)2 − 2x2,

subject to x1 − 2x2 ≥ −2, (C)

x1, x2 ≥ 0.

a) Lagrangian relax the constraint (C), and evaluate the dual function q at(2p)
µ = 0 and µ = 2. Provide a bounded interval containing f ∗.
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b) Show that for a general convex function f : R
n → R and any x ∈ R

n, the(1p)
subdifferential ∂f(x) is a convex set.

Question 3(3p)

(gradient projection)

The gradient projection algorithm is a generalization of the steepest descent
method to problems defined over convex sets. Given a point xk the next point
is obtained according to xk+1 = ProjX [xk − αk∇f(xk)], where X is the con-
vex set over which we minimize, αk > 0 is the step length, and ProjX(y) :=
arg minx∈X ‖x − y‖ (i.e., the closest point in X to y). Note that if X = R then
the method reduces to the method of steepest descent.

Consider the optimization problem to

minimize f(x) :=
1

2
[(x1 + x2)

2 + 3(x1 − x2)
2],

subject to 0 ≤ x1 ≤ 1,
0 ≤ x2 ≤ 2.

Start at the point x0 = (0 2)T and perform one iteration of the gradient projection
algorithm using step length αk = 1/4. Note that the special form of the feasible
region X makes the projection very easy! Is the point obtained a global/local
optimum? Motivate why/why not!

Question 4

(KKT conditions)

Consider the problem to

minimize x1 + x2,
subject to x1x2 ≤ 0,

x1, x2 ≥ 0.

a) Show that the KKT conditions hold at the optimal point x∗ = (0, 0)T.(1p)

b) Show that the Abadie CQ does not hold for this problem. (Hint: is the(1p)
tangent cone convex?).
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c) Now let f , gi ∈ C1, i = 1, . . . ,m. and consider the problem to(1p)

minimize f(x),
subject to gi(x) ≤ 0, i = 1, . . . ,m.

Show that the KKT conditions are necessary for optimality in this problem
under the Guignard CQ, which states that “G(x) = conv TS(x)”, where

G(x) := {p ∈ R
n | ∇gi(x)Tp ≤ 0, i ∈ I(x) },

I(x) denotes the active constraints at x, and TS(x) denotes the tangent
cone of the feasible set S at x. Does the Guignard CQ hold for this prob-
lem?. (Hint: consider refining the geometric optimality conditions.)

Question 5

(linear programming duality and optimality)

Let c ∈ R
n, b ∈ R

m, and A ∈ R
m×n, and consider the canonical LP problem

minimize z = cTx,

subject to Ax ≥ b,

x ≥ 0n.

We denote the problem by (P).

a) Formulate explicitly the Lagrangian dual problem corresponding to the La-(1p)
grangian relaxation of all constraints of (P). (That is, the dimension of the
Lagrangian dual problem is m + n.) Establish that this Lagrangian dual
problem is equivalent to the canonical LP dual (D) of (P).

b) In the context of Lagrangian duality in nonlinear programming, the stan-(2p)
dard formulation of the primal problem is that to find

f ∗ := infimum
x

f(x), (1)

subject to gi(x) ≤ 0, i = 1, . . . , ℓ,

x ∈ X,
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where f : R
n → R and gi : R

n → R (i = 1, 2, . . . , ℓ) are given functions,
and X ⊆ R

n.

Identify the LP problem (P) as a special case of the general problem (1).
State the global optimality conditions for the problem (1) and establish that
when applied to the problem (P) they are equivalent to the primal–dual
optimality conditions for the primal–dual pair (P), (D) of LP problems.

Question 6(3p)

(convergence of an exterior penalty method)

Let us consider a general optimization problem:

minimize f(x),

subject to x ∈ S,
(1)

where S ⊂ R
n is a non-empty, closed set and f : R

n → R is a given differentiable
function. We assume that the feasible set S of the optimization problem (1) is
given by the system of inequality and equality constraints:

S = {x ∈ R
n | gi(x) ≤ 0, i = 1, . . . ,m,

hj(x) = 0, j = 1, . . . , ℓ },
(2)

where gi ∈ C(Rn), i = 1, . . . ,m, hj ∈ C(Rn), j = 1, . . . , ℓ.

We choose a function ψ : R → R+ such that ψ(s) = 0 if and only if s = 0 (typical
examples of ψ(·) are ψ1(s) = |s|, or ψ2(s) = s2), and introduce the function

νχ̌S(x) := ν

( m
∑

i=1

ψ
(

max{0, gi(x)}
)

+
ℓ

∑

j=1

ψ
(

hj(x)
)

)

, (3)

where the real number ν > 0 is called a penalty parameter.

We assume that for every ν > 0 the approximating optimization problem to

minimize f(x) + νχ̌S(x) (4)

has at least one optimal solution x∗

ν .

Prove the following result.

Theorem 1 Assume that the original constrained problem (1) possesses optimal
solutions. Then, every limit point of the sequence {x∗

ν}, ν → +∞, of globally
optimal solutions to (4) is globally optimal in the problem (1).
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Question 7(3p)

(modelling)

On Sundays the Sudoku-like game Binero is often published in the local morning
paper. The objective is to fill out an n×n grid, using the numbers 0 or 1, where
n is an even number. The rules are that:

• there are no more than two consecutive identical numbers in any row or
column

• each row and column contains an equal amount of zeros and ones.

• no two rows are alike, and no two columns are exactly alike.

Consider the grid as a set of N × N rows and columns, with |N | = n. Let the
intially supplied numbers of a Binero puzzle be represented by the numbers aij

for (i, j) ∈ D ⊂ N × N , where aij is the number the puzzlemaker has placed
in row i, column j, and D is the set of rows/columns where there are numbers
placed.

Formulate an integer linear program whose feasible solutions yield solutions to
the puzzle. Describe also how you, by optimizing two versions of your model, can
determine whether the puzzle has unique solution or not.

[Note:] Do not solve the problem. Formulating a model for a subset of rules may
yield partial points, and the uniqueness part can be solved independently of the
original model being correct or not.

Figure 1: An example of a Binero puzzle (left) with n = 10 and its solution
(right).


