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FormulationLP duality

Consider the primal LP written on standard form:

z∗ = infimum cT x ,

subject to Ax = b,

x ≥ 0.

(P)

where A ∈ R
m×n, c ∈ R

n, b ∈ R
m. The corresponding dual LP is

q∗ = supremum bT y ,

subject to A
T
y ≤ c ,

y ∈ R
m.

(D)

(P) Minimization problem with n variables and m constraints.

(D) Maximization problem with m variables and n constraints.
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FormulationSimplex algorithm, review

◮ At a basic feasible solution (BFS), the variables can be ordered s.t.

x =

(

xB
xN

)

, A = (B,N), c =

(

cB
cN

)

,

where xB are basic variables and xN the non-basic variables.

◮ For a specific basis matrix B, we have that

xB = B−1b,

xN = 0n−m

◮ The simplex algorithm iteratively changes B by one column until it
terminates (either optimality or optimal objective value is −∞).
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FormulationIntroducing a dual vector

◮ Apply simplex algorithm, and assume an optimal basis B is found

◮ Optimal basis B means that the reduced costs are nonnegative:

c̃TN = cTN − cTBB
−1N ≥ (0n−m)T (1)

We introduce the (optimal dual) vector

y∗ := (cTBB
−1)T (2)

◮ By definition in (2), bT y∗ = (y∗)
T
b = cTB (B−1b) = cTB xB = cT x∗

◮ In addition, by optimality (i.e., (1)),

cTN − (y∗)TN ≥ (0n−m)T

cTB − (y∗)TB = 0m

}

=⇒ cT − (y∗)TA ≥ 0n

Thus, y∗ satisfies AT y∗ ≤ c and bTy∗ = cT x∗
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FormulationLower bounds

In general, for two vectors x ∈ R
n and y ∈ R

m fulfilling

Ax = b,

x ≥ 0n
AT y ≤ c ,

y ∈ R
m

That is, x is feasible to (P) and y is feasible to (D). Then we have that

cT x ≥ yTAx = yTb = b
T
y

◮ The dual objective value for any y feasible to (D) is a lower bound
of the primal objective value for any x feasible to (P), including z∗

the primal optimal objective value.

◮ We maximize bT y (s.t. AT y ≤ c) to get the best lower bound.
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FormulationThe dual LP

So we formulate the problem of finding the best lower bound as finding

q∗ = supremum bT y ,

subject to AT y ≤ c ,

y ∈ R
m.

(D)

◮ We will show that by some simple assumptions, we get q∗ = z∗,
meaning that the lower bound is tight.

◮ (D) is the same problem as the Lagrangian dual problem in
Lecture 7. You can try deriving (D) from (P) yourself!

◮ How do we construct dual problems for all forms of LP’s, in addition
to the standard form (P) and its dual (D)?
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FormulationDual problem, general construction

◮ We want to construct the dual problems for all forms of LP’s.

◮ Let A be the constraint matrix. Let aTi denote the i-th row of A,
and Aj denote the j-th column of A:

(primal problem) (dual problem)

minimize
x

cT x maximize
y

bTy

subject to aTi x ≥ bi , i ∈ M1, subject to yi ≥ 0, i ∈ M1,

aTi x ≤ bi , i ∈ M2, yi ≤ 0, i ∈ M2,

aTi x = bi , i ∈ M3, yi ∈ R
m, i ∈ M3,

xj ≥ 0, j ∈ N1 AT
j y ≤ cj , j ∈ N1,

xj ≤ 0, j ∈ N2 AT
j y ≥ cj , j ∈ N2,

xj ∈ R
n, j ∈ N3 AT

j y = cj , j ∈ N3.
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Duality TheoryDuality

z∗ = infimum cT x ,

subject to Ax = b,

x ≥ 0.

(P)

q∗ = supremum b
T
y ,

subject to AT y ≤ c ,

y ∈ R
m.

(D)

We will now present some theoretical results about this primal/dual pair.
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Duality TheoryWeak duality, I

Weak duality theorem

If x is a feasible solution to (P) and y is a feasible solution to (D),
then

cT x ≥ bT y .

Proof: Primal feasibility and dual feasibility implies

Ax = b (3a)

x ≥ 0 (3b)

c ≥ AT y (3c)

Thus,

cT x
(3c),(3b)

≥ yTAx
(3a)
= bT y .
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Duality TheoryWeak duality, II

Corollary

◮ If the optimal objective value of primal problem (P) is −∞,
then dual problem (D) is infeasible.

◮ If the optimal objective value of dual problem (D) is +∞, then
primal problem (P) is infeasible.

Proof: If (D) is feasible, then there exists y s.t. AT y ≤ c and

cT x ≥ bTy > −∞ for all x feasible to (P). Thus, the optimal objective

value of primal problem (P) is bounded from below. This shows the first

statement. The second statement can be shown similarly.
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Duality TheoryWeak duality, III

Corollary

If x is a feasible solution to (P), y is a feasible solution to (D), and

cT x = bT y ,

then x is optimal in (P) and y is optimal in (D).

Proof: By statement assumption and weak duality theorem,

cTx = bT y ≤ cT x̃ , ∀x̃ : Ax̃ = b, x̃ ≥ 0,

bTy = cT x ≥ bT ỹ , ∀ỹ : AT ỹ ≤ c

Thus, x is optimal in (P) and y is optimal in (D).
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Duality TheoryStrong duality

Strong duality theorem

If (P) and (D) both have feasible solutions, then there exist optimal
solutions to (P) and (D), and their optimal objective function values
are the same.

Proof: (P) and (D) feasible implies simplex algorithm terminates with an
optimal basis matrix B with the corresponding BFS x∗ optimal to (P).

Define (y∗)
T
= cTB B−1, then bTy∗ = cTB B−1b = cT x∗.

Since B is optimal basis, cTN − cTB B−1N ≥ 0. This, together with
cTB − cTB B−1B = 0, implies cT − (y∗)TA ≥ 0 and y∗ is feasible to (D).

Finally, weak duality theorem implies that y∗ is optimal to (D).
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Duality TheoryExample, strong duality

minimize − x1,

subject to x1 − x2 ≤ 1,

x1 + 2x2 ≤ 4,

x1, x2 ≥ 0.

(P)

x1

x2
−c = (1, 0)T

x1 − x2 = 1

x1 + 2x2 = 4

maximize y1 + 4y2,

subject to y1 + y2 ≤ −1,

−y1 + 2y2 ≤ 0,

y1, y2 ≤ 0.

(D)

y1

y2

b = (1, 4)T
−y1 + 2y2 = 0

y1 + y2 = −1
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Duality TheoryExample, strong duality

minimize − x1,

subject to x1 − x2 ≤ 1,

x1 + 2x2 ≤ 4,

x1, x2 ≥ 0.

(P)

x1

x2
−c = (1, 0)T

x1 − x2 = 1

x1 + 2x2 = 4

x∗

cT x∗ = −x∗1 = −2

maximize y1 + 4y2,

subject to y1 + y2 ≤ −1,

−y1 + 2y2 ≤ 0,

y1, y2 ≤ 0.

(D)

y1

y2

b = (1, 4)T
−y1 + 2y2 = 0

y1 + y2 = −1

y∗

bT y∗ = y∗
1 + 4y∗

2 = −2
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Duality TheoryObtaining dual solution

The proof of the strong duality theorem was constructive, meaning that
we construct an optimal dual solution from an optimal basic feasible
solution by

(y∗)T = cTBB
−1

Hence,

◮ If the primal problem is solved by the simplex algorithm,

◮ we obtain the optimal dual solution without any additional effort.

◮ Supervisor’s principle. (Give your boss both x∗ and y∗)
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Duality TheoryLP, matrix of possibilities

◮ For a LP, only three possibilities are allowed:

1. There is a finite optimal solution.
2. The optimal objective value is unbounded (e.g., −∞ for

minimization problem).
3. The problem is infeasible.

◮ A LP and its dual can have the following possibilities:

(D)\(P) finite optimum unbounded infeasible

finite optimum possible impossible impossible
unbounded impossible impossible possible
infeasible impossible possible possible
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Duality TheoryComplementary slackness

Complementary Slackness Theorem

Let x be feasible in (P) and y feasible in (D). Then

x optimal to (P)
y optimal to (D)

}

⇐⇒ xj (cj − AT
·j y) = 0, j = 1, . . . , n,

where A·j is column j of A.

Proof:

xj (cj − AT
·j y) = 0, ∀j =⇒ (cT − yTAx) = 0 =⇒ cT x = bT y

By weak duality theorem, x is optimal to (P) and y is optimal to (D).
If x is optimal to (P) and y is optimal to (D), strong duality implies

cT x = bT y
x≥0, Ax=b
======⇒

AT y≤c
xj(cj − AT

·j y) = 0, j = 1, . . . ,m
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Duality TheoryComplementary slackness

Complementary Slackness Theorem

Let x be feasible in (P) and y feasible in (D). Then

x optimal to (P)
y optimal to (D)

}

⇐⇒ xj (cj − A
T
·j y) = 0, j = 1, . . . , n,

where A·j is column j of A.

For a primal-dual pair of optimal solutions x∗, y∗

◮ If there is slack in one constraint, then the respective variable in the
other problem is zero.

◮ If a variable is positive, then there is no slack in the respective
constraint in the other problem.
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Sensitivity AnalysisInterpreting the dual solution (I)

(P) :

minimize
x

cT x

subject to Ax = b,

x ≥ 0.

Suppose solving (P) leads to optimal basis B by simplex method.
What can we say about the optimal solution to (P ′), perturbed problem?

(P ′) :

v(b′) := minimize
x

cT x

subject to Ax = b′(= b +∆b),

x ≥ 0.

◮ If in (P) xB = B−1b > 0 then for small enough |∆b| (i.e., change
from b to b′), B remains an optimal basis for (P ′):

|∆b| small enough =⇒ x ′B = B−1b′ = xB + B−1∆b ≥ 0

B opt in (P) =⇒ c̃N = (cTN − cTB B−1N)T ≥ 0 =⇒ B opt in (P ′)
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Sensitivity AnalysisInterpreting the dual solution (II)

◮ As long as B remains optimal basis for (P ′), optimal objective value
of (P ′), which is denoted v(b′), is

v(b′) = cTB x ′B = cTB B−1b′ = (y∗)Tb′,

y∗ is an optimal dual for vector for (P), obtained by B.

B opt basis of non-degenerate BFS in (P)

∆b = (b − b′) small enough in magnitude

}

=⇒ v(b′) = (y∗)
T
b′

=⇒ v(b′) locally linear near b′ = b

◮ If B is degenerate in (P), B need not be optimal basis for (P ′) for
arbitrarily small |∆b| and local linearity of v(b′) need not hold.
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Sensitivity AnalysisInterpreting the dual solution (III)

Shadow price theorem

If, for a given vector b, the optimal solution to (P) corresponds to a
non-degenerate BFS, then its optimal objective value is differentiable
at b, with

∂v(b)

∂bi
= y∗

i , i = 1, . . . ,m,

that is, ∇v(b) = y∗

◮ So the dual variable y∗
i is called the shadow price of constraint i .

◮ Assuming the optimal basis does not change, then the theorem
states that a unit change in the right-hand side bi would change the
optimal value with the amount y∗

i .
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Sensitivity AnalysisPhysical meaning of the dual variable

◮ Assume that a constraint in the primal problem is

x1 + x2 ≥ 4,

which has the physical meaning that we need to fulfill the demand,
which is 4 units.

◮ Assume that we have solved the problem and the optimal objective
value (cost) is 10 Skr. We have also obtained an optimal dual
variable y∗ = 2 corresponding to that constraint.

◮ What happens with the optimal value if we increase our demand to
4.5 units? (Changing the constraint to x1 + x2 ≥ 4.5)

Assuming that this change of the demand does not change the
optimal basis, the change in the optimal objective value would be

0.5 · y∗ = 1 Skr

◮ So increasing the demand to 4.5 units would mean that the new
optimal objective value (cost) is 11 Skr.
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Sensitivity AnalysisSensitivity analysis

Cosider the LP

z∗ = infimum cT x ,

subject to Ax = b,

x ≥ 0.

(P)

We will now study two different perturbations of the LP, namely

◮ perturbations in the objective function coefficients cj ; and

◮ perturbations in the right-hand side coefficients bi .

Assume that we have solved this problem, i.e., we have x∗ =

(

xB
xN

)
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Sensitivity AnalysisPerturbations in the objective

The objective function is perturbed by the vector p ∈ R
n, that is

z̄∗ = infimum (c + p)T x ,

subject to Ax = b,

x ≥ 0.

(P)

◮ The optimal solution x∗ to the original problem is clearly feasible in
this problem. But is it still optimal?

◮ Rearrange p = (pTB , p
T
N )

T . The optimality condition for the BFS
determined by the basis B is that the reduced costs are nonnegative:

c̃TN = (cN + pN)
T − (cB + pB)

TB−1N ≥ 0

This is a sufficient condition for x∗ still being optimal. Not a
necessary condition however.
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Sensitivity AnalysisPerturbations in objective (non-basic)

If only one component of cN is perturbed, i.e.,

p =

(

pB
pN

)

=

(

0m

εe j

)

, ε ∈ R

Then we have that x∗ is optimal in the perturbed problem if

c̃TN = (cN + pN)
T − (cB + pB)

TB
−1

N

= (cN + εe j)
T − (cB)

TB−1N ≥ 0

So a change in a non-basic coefficient cj only affects the j th reduced cost,
i.e., we only need to check that

(c̃N)j = (cN)j + ε− cTBB
−1N j ≥ 0
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Sensitivity AnalysisPerturbations in objective (basic var)

If only one component of cB is perturbed, i.e.,

p =

(

pB

pN

)

=

(

εe j
0n−m

)

for some ε ∈ R. Then we have that x∗ is optimal in the perturbed
problem if

c̃TN = (cN + pN)
T − (cB + pB)

TB−1N

= cTN − (cB + εe j)
TB

−1
N ≥ 0

So a change in a non-basic coefficient cj affects all the reduced cost, i.e.,

we need to check that the whole vector c̃N ≥ 0
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Sensitivity AnalysisLarge perturbations in the objective

The objective function is perturbed by the vector p ∈ R
n, that is

z̄∗ = infimum (c + p)T x ,

subject to Ax = b,

x ≥ 0.

(P)

◮ Optimal solution to original problem (p = 0) is feasible for (P),
since xB = B−1b independent of p.

◮ If p is too large, sufficient condition

c̃TN = (cN + pN)
T − (cB + pB)

TB
−1

N ≥ 0

need not hold.

◮ Start another run of simplex algorithm with starting basis B!
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Sensitivity AnalysisExample, perturbation in objective

Primal problem

Perturbation in the objective by a vector p = (0,−1)T .

x1

x2
−c = (1, 0)T

x1 − x2 = 1

x1 + 2x2 = 4

c = (−1, 0)T

x1

x2
−(c + p) = (1, 1)T

x1 − x2 = 1

x1 + 2x2 = 4

c + p = (−1,−1)T

(We change the negative gradient)
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Sensitivity AnalysisExample, perturbation in objective

Dual problem

Perturbation in the objective by a vector p = (0,−1)T .

y1

y2

b = (1, 4)T
−y1 + 2y2 = 0

y1 + y2 = −1

c = (−1, 0)T

y1

y2

b = (1, 4)T

−y1 + 2y2 = −1

y1 + y2 = −1

c + p = (−1,−1)T

(We change the feasible set)
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Sensitivity AnalysisPerturbations in the right-hand side

The right-hand side is perturbed by a vector p ∈ R
m.

z̄∗ = infimum cT x ,

subject to Ax = b + p,

x ≥ 0.

(P)

Now the reduced costs do not change, so the optimal solution x∗ to the
original problem is optimal to the perturbed problem as long as x∗ is
feasible in the perturbed problem, i.e., if

x∗ =

(

xB
xN

)

=

(

B−1(b + p)
0n−m

)

≥ 0n

So we need to check that if B−1(b + p) ≥ 0m
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Sensitivity AnalysisExample, perturbation in RHS

Primal problem

Perturbation in the right-hand side by a vector p = (0,−2)T .

x1

x2
−c = (1, 0)T

x1 − x2 = 1

x1 + 2x2 = 4

c = (−1, 0)T

x1

x2
−c = (1, 0)T

x1 − x2 = 1

x1 + 2x2 = 2

c + p = (−1,−1)T

(We change the feasible set)
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Sensitivity AnalysisExample, perturbation in RHS

Dual problem

Perturbation in the right-hand side by a vector p = (0,−2)T .

y1

y2

b = (1, 4)T
−y1 + 2y2 = 0

y1 + y2 = −1

c = (−1, 0)T

y

y1

y2

b = (1, 2)T
−y1 + 2y2 = 0

y1 + y2 = −1

c + p = (−1,−1)T

(We change the gradient)
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Sensitivity AnalysisLarge perturbations in the RHS

The right-hand side is perturbed by a vector p ∈ R
m.

z̄∗ = infimum cT x ,

subject to Ax = b + p,

x ≥ 0.

(P)

◮ Optimal solution to original problem (when p = 0) is optimal to (P)
if and only if xB (p) = B−1(b + p) ≥ 0, since reduced costs

c̃N = (cTN − cTB B−1N)
T
are independent of p.

◮ If p is too large, the xB(p) ≥ 0 condition need not hold.

◮ Still, we can run the dual simplex algorithm with a starting dual
feasible basis (see text).
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