Lecture 11

Convex optimization

Kin Cheong Sou

Department of Mathematical Sciences

Chalmers University of Technology and Goteborg University
December 4, 2014

GOTEBORGS UNIVERSITET

CHALMERS |



Announcement

If you have the receipt of the textbook, you can replace your
current copy with a corrected copy at Cremona before Dec 12!
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Convex sets and functions Convex optimization

A set S CR" is a convex set if

x1,x? €8S,

1 2
Ae(O,l)}:)‘X +(1-Xx“€eS

A function f : R" — R is a convex function on the convex set S if

x1,x? €8S,

A €(0,1) } = (A 4 (1= 2)x%) < AMF(X) + (1= N)F ().
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Convex optimization Convex optimization

A convex optimization problem is

f* =infimum  f(x),

subjectto x € S,
f :R" — R is a convex function on S and S C R" is a convex set.

minimize f(x)

A typical problem: .
yP P subject to  g;
» f is a convex function,
» g; are convex functions, i =1,..., m,

> h; are affine functions, j = 1,..., k. Why not just convex h;'s?
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Convex equality constraints are linear Convex optimization

> For convex h(x), the set {x | h(x) = 0} need not be convex!
» Consider h(x) : R? = R, h(x) = ||x|j5 — 1.

> The set {x | h(x) = 0} = {x € R? | ||x||, = 1} is the edge of a
circle not including inside. Clearly not convex!

{x [ h(x) =0}

> The only convex equality constraints are linear constraints.
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Local minimum = global minimum  Convex optimization

Consider convex optimization problem

minimize  f(x),
. X (CP)
subjectto x € S,

If x* is a local minimum of convex optimization problem (CP), then

*

x* is also a global minimum of (CP).

Proof: Assume x* is local but not global minimum.
> If x* is not global minimum, then there exists y € S : f(y) < f(x*).

> Forany 0 < 0 < 1, define z(0) = 6x* + (1 — 0)y. z() € S and
f(z(0)) < f(x*) by convexity of S and f.

> For < 1, f(z(9)) > f(x*), as x* is local minimum. Contradiction!
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Algorithmic implication Convex optimization

» Most algorithms for constrained optimization problems find only
KKT points.

» Examples include gradient projection method, penalty method,
interior point method, etc (see lecture 12 and lecture 13).

» Without additional assumptions KKT points need not be global
minima.

» With convexity and Slater’s constraint qualification, KKT points are
global minima (see Theorem 5.49, Corollary 5.51 in text).

TMAO947 — Lecture 11 Convex optimization



Convex problem, non-differentiable objective Subgradient

For convex problem with convex objective f and convex feasible set S:
minimize  f(x),
X
subjectto  x € S,
» Most algorithms assume some smoothness of f. For example,
gradient descent method:  x**1 « xK — a, VF(x*)

requires that f is differentiable.

» For convex problem, we can relax the differentiability assumption
because of the subgradient method, to be detailed:

XKLk g pk,

where p¥ is a subgradient of f at x¥. But what is a subgradient?
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Subgradient Subgradient

Definition
Let S C R" be a nonempty convex set and let f : S — R be a convex
function. Then p € R" is called a subgradient of f at x € S if

f(x) > f(x)+p ' (x—X), foranyxecS.

> We define the set of all subgradients to f at x as the
subdifferential of f at X as

Of(x)={peR"| f(x) > f(x)+p' (x— %), forall x € S.}
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Subgradient, differentiable functions Subgradient

Lemma
Let S be a nonempty convex set and f : S — R a convex function.
Suppose that at X € int S, function f is differentiable, meaning that
Vf(X) exists. Then

of (x) = {VF(x)}

Figure : When f is differentiable, 0f (x) = {Vf(x)}
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Subgradient, non-differentiable functions  Subgradient

When f is not differentiable at X, 9f(x) may not be a singleton.
f(x)
R +p] (x—%)

------------ f(X)+ p3 (x — %)
: ZET—— f()?) + P;—(X _ )-<)

X

Figure : Example of three subgradients, p;, p,, p3 of f at the point X.
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Existence of subgradient Subgradient

» Now we know what a subgradient is, but does it exist after all?

> Except possibly at the boundary of dom(f) subgradient always exists

Theorem
Let S CR"” be a convex set and f : S — R be a convex function.
For each x € int S, there always exists a vector p € R" such that

f(x) > f(X)+p"(x—Xx), foranyxeS.

» The statement holds for all X € int S, but at the boundary of S
something strange might happen... when f is not continuous.

» Why is the theorem true? We show it via a geometric approach. We
need two concepts: epigraph and supporting hyperplane theorem.
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Eplgraph Subgradient

Let SCR" and f : S — R. The epigraph of f with respect to S is

episf = {(x,a) €S xR | f(x)<a}, episfCR™

The graph of function f (all points (x, f(x))) is in the boundary of epis f.
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Epigraph, convex case Subgradient

Theorem
Let S C R"” be a nonempty and convex set, and let f : S — R. Then
f is convex if and only if epis f is a convex set.

Proof: We show it on blackboard.
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Supporting hyperplane theorem Subgradient

Theorem
Let C C R"” be a nonempty and convex set. Let x be a point on the

boundary of C. Then there exists a supporting hyperplane to C at
X, meaning that there exists v # 0" such that

vi(x—=x) <0, forallxe C.

p
NUZ N
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Subgradient by supporting hyperplane, | Subgradient

> For x € S, (%,f(x)) is a point at the boundary of epig f (convex).

> Thus, there exists v : v’ (x — X,z — (X)) <0, V(x,z) € epigf.

> Only when the hyperplane is “non-vertical” does v define a
subgradient at X!
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Subgradient by supporting hyperplane, Il Subgradient

> At (X, (X)) apply supporting hyperplane theorem for epig f yields
vi(x —%,z—f(X)) <0, V(x,2z)€ epigf
> Write v = (u,t) € R" x R. For all (x,z) € epig f,
uT (x=X)+t(z—f(x)) <0 = t < 0 (otherwise LHS — 00 as z — o).

> If t <0 (i.e., hyperplane is non-vertical), replace z with f(x) yields

u

F(x) = £(%) = ()T (F(0) = F(%)) = —7 € O ().

» When will t < 0? If t =0, then u”(x —X) <0 forall x € S. Thisis
impossible when X € int S.
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Subgradient, summary Subgradient

» Now we know subgradient exists for convex f over int S. But...

» How do we find a subgradient when we know at least one exists?

» We will see one (later in this lecture) when dealing with
Lagrangian dual function.

» What is the use of a subgradient? We use it to define...
» Optimality condition
» Subgradient method

for convex optimization problems with non-differentiable
objective functions.
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Optimality conditions with subgradients  Subgradient

Proposition (optimality of a convex function over R")
Let f : R" — R be a convex function. The following are equivalent:

1. f is globally minimized at x* € R";
2. 0" € Of (x*);

X

> N.B. A more completed theorem available in text (Proposition 6.19)!
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Subgradient methods Subgradient methods

We want to define an optimization method using subgradients.

> Analogous to gradient descent method, we move iterate in the
negative subgradient direction —p (i.e., x*™1 + xk — a p¥)

> But note: —p need not be a descent direction. (See the figure)

X
f(x) = bl + 2|x|
p
X1

» It however can move us "towards” to the optimal solution.
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Subgradient methods Subgradient methods

Subgradient direction p defines “cutting plane” for all x € S : f(x) < f(X),

f(x) > f(X)+p " (x—x) = p'x<p’x (ie. the halfspace containing x*).

—-pP 2/
/ N
1/ e -p
v _?_. X x*

Gradually “carve” the optimal solution set out of the feasible set.
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Subgradient method, unconstrained Subgradient methods

So now we can define a subgradient method

Subgradient method (unconstrained)
Step 0 Initiate x°, £2, = f(x%). k=0.
Step 1 Find a subgradient p¥ to f in x*.
Step 2 Update x*+1 = xk — q p¥ (a is the step length in iteration k)
Step 3 Let it = min{fk,,, f(x**1)}

Step 4 If some termination criteria is fulfilled, stop. Otherwise, let
k:=k+1 and go to Step 1.
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Subgradient method, constrained Subgradient methods

A simple extention if we consider minimizing f over the convex set S.

Subgradient method (nontrivial convex feasible set)
Step 0 Initiate x° € S, £2, = f(x°). k =0.
Step 1 Find a subgradient p¥ to f in xk.
Step 2 Update x* = Projs (x* — axp¥)
Step 3 Let fXit = min{fk,,, f(x**1)}

Step 4 If some termination criteria is fulfilled, stop. Otherwise, let
k:=k+1 and go to Step 1.
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Step length rules Subgradient methods

Examples of step size rules:

» Constant step size
A =

» Square summable but not summable

o0 o0
E a2 < oo, E Qe = 00
k=0 k=0

For example: ax = 2%

Depending on the step size rules, different convergence results can be
shown.
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Subgradient methods, summary Subgradient methods

> Now we know subgradient methods can solve convex optimization
problems with non-differentiable objective function. But...

» What are typical problems with non-differentiable objective?
» To use subgradient methods, we need to find subgradients. Are they

easy to find?

It turns out, the Lagrangian dual problem is naturally suited for
subgradient methods.
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The Lagrangian [EY Lagrangian dual problem

Consider the Lagrangian relaxation of the problem to find

f* = infimum f(x),
subject to g(x) <0,
x e X.

We first construct the Lagrangian function
L(x, ) = F(x) + n"g(x),
and define the dual function as

q(p) = infimum L(x, p)
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The Lagrangian [EY Lagrangian dual problem

We then define the Lagrangian dual problem, which is to find

g = supremum q(s),
subjectto wu >0

» As we have shown, the dual function g is always concave, so the
dual problem is a convex problem.

> g is however not in general differentiable.

> Therefore, subgradient methods are often utilized to solve the dual
problem.
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Subgradients for the dual Lagrangian dual problem

But how do we find subgradients to g at a point u?

> In order to evaluate g(u), we need to solve the problem

e e T
q(p) = |nf)|(r€n)%1m L(x,pn) = mf;(ren)?m f(x)+ p' g(x).

Let the solution set to this problem be

X(p) = argmin L(x, p)
xeX

> If we take any x € X(u), then g(x) will be a subgradient. (We will
show this soon)

» So when evaluating the dual function g at the point u, we obtain a
subgradient to g.
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Subgradients for the dual Lagrangian dual problem

Proposition
Assume that X is nonempty and compact.Then the following hold.

a) Let uw € R™. If x € X(u), then g(x) is a subgradient to g at p,
that is, g(x) € 9q(p).

b) Let u € R™. Then

9q(p) = conv {g(x) | x € X(p)}.

Proof: See Proposition 6.20 in text.
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Subgradient method, dual prob. Lagrangian dual problem

Subgradient method for the Lagrangian dual problem
Step 0 Initialize u°, g2, = q(p°), k :=0

Step 1 Solve the problem (dual function evaluation)

— infi k
q(p) = |nf>|<r€n)%1m L(x, 1)

Let the solution to the problem be x*.
g(x¥) is then a subgradient to q at uX.

Step 3 Update p** = [u* + axg(x¥)], (nonnegative orthant projection)

Step 4 Let gyl = max{gf, q(u**1)}

Step 4 If some termination criteria is fulfilled, stop. Otherwise, let
k:=k+1 and go to Step 1.
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