
Lecture 11

Convex optimization

Kin Cheong Sou
Department of Mathematical Sciences
Chalmers University of Technology and Göteborg University
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Announcement

If you have the receipt of the textbook, you can replace your
current copy with a corrected copy at Cremona before Dec 12!
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Convex optimizationConvex sets and functions

A set S ⊆ R
n is a convex set if

x1, x2 ∈ S ,

λ ∈ (0, 1)

}

=⇒ λx1 + (1 − λ)x2 ∈ S

A function f : Rn → R is a convex function on the convex set S if

x1, x2 ∈ S ,

λ ∈ (0, 1)

}

=⇒ f
(

λx1 + (1− λ)x2
)

≤ λf (x1) + (1− λ)f (x2).
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Convex optimizationConvex optimization

A convex optimization problem is

f ∗ = infimum f (x),

subject to x ∈ S ,

f : Rn → R is a convex function on S and S ⊆ R
n is a convex set.

A typical problem:
minimize

x
f (x)

subject to gi(x) ≤ 0, i = 1, . . . ,m

hj(x) = 0, j = 1, . . . , k

◮ f is a convex function,

◮ gi are convex functions, i = 1, . . . ,m,

◮ hj are affine functions, j = 1, . . . , k . Why not just convex hj ’s?
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Convex optimizationConvex equality constraints are linear

◮ For convex h(x), the set {x | h(x) = 0} need not be convex!

◮ Consider h(x) : R2 → R, h(x) = ‖x‖
2
2 − 1.

◮ The set {x | h(x) = 0} = {x ∈ R
2 | ‖x‖2 = 1} is the edge of a

circle not including inside. Clearly not convex!

{x | h(x) = 0}

{x | h(x) ≤ 0}

◮ The only convex equality constraints are linear constraints.
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Convex optimizationLocal minimum = global minimum

Consider convex optimization problem

minimize
x

f (x),

subject to x ∈ S ,
(CP)

If x∗ is a local minimum of convex optimization problem (CP), then
x∗ is also a global minimum of (CP).

Proof: Assume x∗ is local but not global minimum.

◮ If x∗ is not global minimum, then there exists y ∈ S : f (y) < f (x∗).

◮ For any 0 < θ < 1, define z(θ) = θx∗ + (1− θ)y . z(θ) ∈ S and
f (z(θ)) < f (x∗) by convexity of S and f .

◮ For θ ≪ 1, f (z(θ)) ≥ f (x∗), as x∗ is local minimum. Contradiction!
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Convex optimizationAlgorithmic implication

◮ Most algorithms for constrained optimization problems find only
KKT points.

◮ Examples include gradient projection method, penalty method,
interior point method, etc (see lecture 12 and lecture 13).

◮ Without additional assumptions KKT points need not be global
minima.

◮ With convexity and Slater’s constraint qualification, KKT points are
global minima (see Theorem 5.49, Corollary 5.51 in text).

TMA947 – Lecture 11 Convex optimization 7 / 30



SubgradientConvex problem, non-differentiable objective

For convex problem with convex objective f and convex feasible set S :

minimize
x

f (x),

subject to x ∈ S ,

◮ Most algorithms assume some smoothness of f . For example,

gradient descent method: xk+1 ← xk − αk∇f (x
k )

requires that f is differentiable.

◮ For convex problem, we can relax the differentiability assumption
because of the subgradient method, to be detailed:

xk+1 ← xk − αkp
k ,

where pk is a subgradient of f at xk . But what is a subgradient?
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SubgradientSubgradient

Definition

Let S ⊆ R
n be a nonempty convex set and let f : S → R be a convex

function. Then p ∈ R
n is called a subgradient of f at x̄ ∈ S if

f (x) ≥ f (x̄) + pT (x − x̄), for any x ∈ S .

◮ We define the set of all subgradients to f at x̄ as the
subdifferential of f at x̄ as

∂f (x̄) =
{

p ∈ R
n | f (x) ≥ f (x̄) + pT (x − x̄), for all x ∈ S .

}
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SubgradientSubgradient, differentiable functions

Lemma

Let S be a nonempty convex set and f : S → R a convex function.
Suppose that at x̄ ∈ intS , function f is differentiable, meaning that
∇f (x̄) exists. Then

∂f (x̄) = {∇f (x̄)}

f (x)

x

x̄

f (x̄) +∇f (x̄)T (x − x̄)

Figure : When f is differentiable, ∂f (x̄) = {∇f (x̄)}
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SubgradientSubgradient, non-differentiable functions

When f is not differentiable at x̄ , ∂f (x̄) may not be a singleton.

f (x)

x

x̄

f (x̄) + pT
1 (x − x̄)

f (x̄) + pT
2 (x − x̄)

f (x̄) + pT
3 (x − x̄)

Figure : Example of three subgradients, p1, p2, p3 of f at the point x̄ .
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SubgradientExistence of subgradient

◮ Now we know what a subgradient is, but does it exist after all?

◮ Except possibly at the boundary of dom(f ) subgradient always exists

Theorem

Let S ⊆ R
n be a convex set and f : S → R be a convex function.

For each x̄ ∈ int S , there always exists a vector p ∈ R
n such that

f (x) ≥ f (x̄) + pT (x − x̄), for any x ∈ S .

◮ The statement holds for all x̄ ∈ intS , but at the boundary of S
something strange might happen... when f is not continuous.

◮ Why is the theorem true? We show it via a geometric approach. We
need two concepts: epigraph and supporting hyperplane theorem.
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SubgradientEpigraph

Let S ⊆ R
n and f : S → R. The epigraph of f with respect to S is

epiS f := {(x , α) ∈ S × R | f (x) ≤ α} , epiS f ⊆ R
n+1

epiS f
f (x)

S x

The graph of function f (all points (x , f (x))) is in the boundary of epiS f .

TMA947 – Lecture 11 Convex optimization 13 / 30



SubgradientEpigraph, convex case

Theorem

Let S ⊆ R
n be a nonempty and convex set, and let f : S → R. Then

f is convex if and only if epiS f is a convex set.

epiS f
f (x)

S x

Proof: We show it on blackboard.
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SubgradientSupporting hyperplane theorem

Theorem

Let C ⊆ R
n be a nonempty and convex set. Let x̄ be a point on the

boundary of C . Then there exists a supporting hyperplane to C at
x̄ , meaning that there exists v 6= 0n such that

vT (x − x̄) ≤ 0, for all x ∈ C .

v = (1, 1)T

vT (x − x̄) = 0

C
x̄ = 1√

2
(1, 1)T

x2

x1

TMA947 – Lecture 11 Convex optimization 15 / 30



SubgradientSubgradient by supporting hyperplane, I

◮ For x̄ ∈ S , (x̄ , f (x̄)) is a point at the boundary of epiS f (convex).

◮ Thus, there exists v : vT
(

x − x̄ , z − f (x̄)
)

≤ 0, ∀(x , z) ∈ epiS f .

epiS f

f (x)

S x

vT (x − x̄, z − f (x̄)) = 0

v

(x̄ , f (x̄))T

◮ Only when the hyperplane is “non-vertical” does v define a
subgradient at x̄!
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SubgradientSubgradient by supporting hyperplane, II

◮ At (x̄ , f (x̄)) apply supporting hyperplane theorem for epiS f yields

vT
(

x − x̄ , z − f (x̄)
)

≤ 0, ∀(x , z) ∈ epiS f

◮ Write v = (u, t) ∈ R
n × R. For all (x , z) ∈ epiS f ,

uT (x−x̄)+t(z−f (x̄)) ≤ 0 =⇒ t ≤ 0 (otherwise LHS →∞ as z →∞).

◮ If t < 0 (i.e., hyperplane is non-vertical), replace z with f (x) yields

f (x) ≥ f (x̄)− (
u

t
)T

(

f (x)− f (x̄)
)

=⇒ −
u

t
∈ ∂f (x̄).

◮ When will t < 0? If t = 0, then uT (x − x̄) ≤ 0 for all x ∈ S . This is
impossible when x̄ ∈ int S .
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SubgradientSubgradient, summary

◮ Now we know subgradient exists for convex f over int S . But...

◮ How do we find a subgradient when we know at least one exists?

◮ We will see one (later in this lecture) when dealing with
Lagrangian dual function.

◮ What is the use of a subgradient? We use it to define...

◮ Optimality condition
◮ Subgradient method

for convex optimization problems with non-differentiable
objective functions.
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SubgradientOptimality conditions with subgradients

Proposition (optimality of a convex function over Rn)
Let f : Rn → R be a convex function. The following are equivalent:

1. f is globally minimized at x∗ ∈ R
n;

2. 0n ∈ ∂f (x∗);

f (x)

x

x̄

f (x̄) + 0T (x − x̄)

◮ N.B. A more completed theorem available in text (Proposition 6.19)!
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Subgradient methodsSubgradient methods

We want to define an optimization method using subgradients.

◮ Analogous to gradient descent method, we move iterate in the
negative subgradient direction −p (i.e., xk+1 ← xk − αkp

k )

◮ But note: −p need not be a descent direction. (See the figure)

f (x) = |x1|+ 2|x2|

x1

x2

p

◮ It however can move us ”towards” to the optimal solution.
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Subgradient methodsSubgradient methods

Subgradient direction p defines “cutting plane” for all x ∈ S : f (x) ≤ f (x̄),

f (x) ≥ f (x̄)+pT (x−x̄) =⇒ pT x ≤ pT x̄ (i.e., the halfspace containing x∗).

x1

x2

x3 x4−p

−p

−p

Gradually “carve” the optimal solution set out of the feasible set.
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Subgradient methodsSubgradient method, unconstrained

So now we can define a subgradient method

Subgradient method (unconstrained)

Step 0 Initiate x0, f 0best = f (x0). k = 0.

Step 1 Find a subgradient pk to f in xk .

Step 2 Update xk+1 = xk − αkp
k (αk is the step length in iteration k)

Step 3 Let f k+1
best = min{f kbest, f (x

k+1)}

Step 4 If some termination criteria is fulfilled, stop. Otherwise, let
k := k + 1 and go to Step 1.
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Subgradient methodsSubgradient method, constrained

A simple extention if we consider minimizing f over the convex set S .

Subgradient method (nontrivial convex feasible set)

Step 0 Initiate x0 ∈ S , f 0best = f (x0). k = 0.

Step 1 Find a subgradient pk to f in xk .

Step 2 Update xk+1 = ProjS
(

xk − αkp
k
)

Step 3 Let f k+1
best = min{f kbest, f (x

k+1)}

Step 4 If some termination criteria is fulfilled, stop. Otherwise, let
k := k + 1 and go to Step 1.
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Subgradient methodsStep length rules

Examples of step size rules:

◮ Constant step size

αk = α

◮ Square summable but not summable

∞
∑

k=0

α2
k <∞,

∞
∑

k=0

αk =∞

For example: αk = a
b+ck

Depending on the step size rules, different convergence results can be

shown.
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Subgradient methodsSubgradient methods, summary

◮ Now we know subgradient methods can solve convex optimization
problems with non-differentiable objective function. But...

◮ What are typical problems with non-differentiable objective?

◮ To use subgradient methods, we need to find subgradients. Are they
easy to find?

It turns out, the Lagrangian dual problem is naturally suited for

subgradient methods.
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Lagrangian dual problemThe Lagrangian dual

Consider the Lagrangian relaxation of the problem to find

f ∗ = infimum f (x),

subject to g(x) ≤ 0,

x ∈ X .

We first construct the Lagrangian function

L(x ,µ) = f (x) + µ
Tg(x),

and define the dual function as

q(µ) = infimum
x∈X

L(x ,µ)
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Lagrangian dual problemThe Lagrangian dual

We then define the Lagrangian dual problem, which is to find

q∗ = supremum q(µ),

subject to µ ≥ 0

◮ As we have shown, the dual function q is always concave, so the
dual problem is a convex problem.

◮ q is however not in general differentiable.

◮ Therefore, subgradient methods are often utilized to solve the dual
problem.
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Lagrangian dual problemSubgradients for the dual

But how do we find subgradients to q at a point µ?

◮ In order to evaluate q(µ), we need to solve the problem

q(µ) = infimum
x∈X

L(x ,µ) = infimum
x∈X

f (x) + µ
Tg(x).

Let the solution set to this problem be

X (µ) = argmin
x∈X

L(x ,µ)

◮ If we take any x ∈ X (µ), then g(x) will be a subgradient. (We will
show this soon)

◮ So when evaluating the dual function q at the point µ, we obtain a
subgradient to q.
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Lagrangian dual problemSubgradients for the dual

Proposition

Assume that X is nonempty and compact.Then the following hold.

a) Let µ ∈ R
m. If x ∈ X (µ), then g(x) is a subgradient to q at µ,

that is, g(x) ∈ ∂q(µ).

b) Let µ ∈ R
m. Then

∂q(µ) = conv {g(x) | x ∈ X (µ)} .

Proof: See Proposition 6.20 in text.
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Lagrangian dual problemSubgradient method, dual prob.

Subgradient method for the Lagrangian dual problem

Step 0 Initialize µ
0, q0best = q(µ0), k := 0

Step 1 Solve the problem (dual function evaluation)

q(µ) = infimum
x∈X

L(x ,µk)

Let the solution to the problem be xk .

g(xk) is then a subgradient to q at µk .

Step 3 Update µ
k+1 =

[

µ
k + αkg(x

k)
]

+
(nonnegative orthant projection)

Step 4 Let qk+1
best = max{qkbest, q(µ

k+1)}

Step 4 If some termination criteria is fulfilled, stop. Otherwise, let
k := k + 1 and go to Step 1.
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