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: Introduction
Integer linear programs

We consider problems of the type

minimize c'x
X
subject to Ax<b (1)
xecZ"

That is, linear programs with additional integrality requirements.
Often we look at the special case of binary programs

minimize c'x
X

subject to Ax<b (2)
x € {0,1}"
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Introduction

Linear integer model

max ZIP = Xl _|_ 2X2
st x + x =< 10 (1)
—x1 + 3x < 9 (2)
Integer program . - ‘)
ae > 0 (45)
- = feasible X1 X2 integer
integer points
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When are integer models needed /helpful? IP modeling

Products or raw materials are indivisible
Logical constraints: “if A then B"; “Aor B”

v

v

Fixed costs

v

v

Combinatorics (sequencing, allocation)

v

On/off-decision to buy, invest, hire, generate electricity, ...
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Logical constraints IP modeling

0-1 binary decision variables can model logical decisions and relations:

v

0-1 binary variables: x = 1 means “true”; x = 0 means “false”.

v

If xtheny: x<y(x=1= y=1).

v

“XOR": x4+ y =1 (cannot be both “true” or both “false”).

v

Exactly one out of n must be true: x; +x + ...+ x, = 1.

v

At least 3 out of 5 must be chosen: x; +x + ...+ x5 > 3.

» and more...
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Disjoint feasible sets IP modeling

Integer decision variables can model disjoint feasible sets:

» For example, either 0 < x <1or5 < x <8:

x>0
x <8
x<1+7y
x > by
y € {0,1}

> Variable x may only take the values 2, 45, 78 or 107

x =2y; + 45y, + 78y3 + 107y,
i+yt+ytya=1
yi,y2,y3,ya € {0,1}
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Fixed costs IP modeling

» Want to minimize an objective function with fixed cost:

f

0 if x =0, C
f(x) = .
caat+ox ifo<x<M, a

where ¢; > 0 is a fixed cost incurred as long as x > 0.
» Modeling fixed cost using binary decision variable:
f(x,y) = ay + cx
x>0
x < My
y €{0,1}
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A Sudoku example IP modeling

» Fill a square n x n grid
with numbers 1...n

» Every number must occur -
exactly once in every row, -7 - -
5
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» To the right is a
supposedly very difficult
sudoku
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Sudoku cont. IP modeling

Want to let xjj = 1 iff the solution to the puzzle puts number k at
row i, column j. Let aj be the given values of the puzzle we want

to solve for (i,j) € D.
minimize ¢cTx

subject tOZXijk:]., ik=1,...,n, (1)
j=1
n
D xipe=1, jk=1,....n (2)
i=1

ms mp
Z Z Xijjk =1, s,p=1,....mk=1,....n, (3)

i=m(s—1)+1j=m(p—1)+1
n

> xip=1, ij=1,....n, (4)
k=1
Xijk:]-v (ivj)€D7k:aij7 (5)
x,-jke{O,l}, i,j,k:l,...,n. (6)
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Sudoku cont IP modeling

» (1)—(3) force every Solution:
number to be used once 0.02 s
in each row, column, and 208 MIP simplex iterations
box. 5 branch-and-bound nodes

> (4) forces each position

to use exactly one 8111217151301 614]9
number. 9143|682 1|7]|5
» (5) forces our solution to 6|7]5]4]9]1]2]8]3
agree with the initial 1]/5|4][23|7(8]9]6
data. 316|918 |4|5| 7|21
218|71]11]6|9|5]|3]|4

» (6) Variabl t b
(bz rar|a es must be AEABREARARREARRE
nan: a(3(8ls5(2]6o[1]7
7/19|161{ 3|18 4|52

» The objective function
lets me tune which
solution | want to get.
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Other applications of integer optimization IP modeling

» Facility location (new hospitals, shopping centers, etc.)
» Scheduling (on machines, personnel, projects, schools)
» Logistics (material- and warehouse control, vehicle routing)

» Distribution (transportation of goods, buses for disabled
persons)

» Production planning

» Telecommunication (network design, frequency allocation)
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Is integer optimization difficult? Complexity

» In a sense no. For binary programs (2) we could in principle
enumerate all 2" possible solutions.

» The more general case (1) is not as straightforward, but clever
finite enumerative schemes exist.

» However, integer programming is NP-hard, meaning that is
unlikely that a polynomial time algorithm exists. Computation
cost grows very rapidly with problem size.
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The combinatorial explosion oS

Assign n persons to carry out n jobs
Assume that a feasible solution is evaluated in 10~9 seconds

# feasible solutions: n!

n 2 5 8 10 100
n! 2 120 | 4.0-10% | 3.6-10° | 9.3-10%%7
[time] | 108510 ®s| 107%s | 1072s | 10 yrs

Complete enumeration of all solutions is not an efficient algorithm!

An algorithm exists that solves this problem in time O(n%) < n3
n 2 5 8 10 100 1000
n’ 8 125 512 10° 10° | 10°
[time] [ 1078 s [ 10775 | 10°s |10 % [103s| 1s
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Solution methods, overview Solution methods

> General solution method (can be expensive but general)

» Branch and bound method (divide-and-conquer)
» Cutting plane method (polyhedral approximation)
» Dynamic programming (divide-and-conquer)

» Algebraic method (e.g., Graver bases)

> Exact solution method for special cases (efficient but not general)

» Shortest path problem
Minimum cut problem
Minimum spanning tree problem
Bipartite matching problem
Assignment problem and more...

vV YyVvyy

> Approximate solution methods

» Usually more efficient; may or may not have error bounds
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Solution methods

Branch and bound method, |

» Divide feasible set F into Fy, F5,..., Fk.

min ¢’ x min ¢’ x

Instead of solving x solve for all i x
st. x€F, st. x€F.

» May need to recursively divide F;, i =1,..., k. This is branching.

» Dividing F all the way to singletons — enumeration. Is it necessary?
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Branch and bound method, I Solution methods

Do we always need to divide F; further when considering

min ¢’ x

subproblem with F;: x ?
st. x€F

We can stop further dividing F;, if one of the following holds:
» F; is an empty set.

» Somehow we manage to solve subproblem with F; to optimality. In
this case we possibly update “the current best” objective value Zpes:.

> Bounding: If we find b(F;), a lower bound of optimal objective
value of subproblem with F;, such that

b(FI) > Zpest-

BNB performance depends critically on quality of lower bound!
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Bounding, LP relaxation SEIMETD (e

How to check if F; = ()7 How to find lower bound b(F;)?
> Let F; be feasible set of the IP (integer program) below, with LP

relaxation:
zp = min cTx z'p = min cTx
X X
Dx>d Dx > d
X integer x real

v

(LP) is a relaxation of (IP), since feasible set of (LP) includes (IP)’s.

v

If (LP) is infeasible then (IP) is infeasible, meaning that F; = {).

v

z's < zjp. Thus, can set lower bound as b(F;) = zp.

v

If solving (LP) yields integer solution, then it is optimal to (IP) too.
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Bounding, Lagrangian dual relaxation ST e

» For IP problem with feasible set F;:

zp = mXin cTx
st. Ax>b
Dx > d
X integer

> Can also obtain lower bound b(F;) by “dualizing” some constraints:

Z'p = max q(u) h g(p) = min c"x+puT(b— Ax)
m wi x
st. u>0 s.t. Dx > d, x integer

> Method is practical only when g(p) is easy to evaluate.

> z'p < z'p < zp — lower bound by Lagrangian dual is always no
worse than LP relaxation bound. Inequalities can be strict.
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Solution methods

Branch and bound, illustration (1)

> An example linear integer programming problem:

X2

minimize x3 — 2x»
subject to —4x; +6x <9
x1+x <4
x1,x >0

X1, X2 integer

> Dots are (integer) feasible points. Let S denote feasible set.
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Branch and bound, illustration (2) ECluEoHSthoes

> Fisdivided into F1 ={x|x >3}NSand L ={x|x <2}NS.
» [ = (. No need to consider further.

> Fy: LP relaxation x? = (0.75,2), lower bound b(F,) = —3.25.

> Split Fot F3={x|x1 > 1,x <2}NS, [ ={x|x1 <1,x2x<2}NS.

X2

infeasible
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Solution methods

Branch and bound, illustration (3)

> Split Fo: F3={x|x1 >1,x<2}NS, A={x|xx <Lixx<2}NS
» F3: LP relaxation x* = (1,2), integer valued! Update zpest = —3.

> Fy: LP relaxation x* = (0,1.5), b(F4) = —3 > Zpest, SO remove Fy.

b(F4) = —3  integer sol
> Zpest Zhest = —3
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Solution methods

Cutting plane

> LP relaxation has too large feasible set...

> Add cuts (i.e., valid inequalities satisfied by all IP feasible solutions
but not LP relaxation solutions) to tighten the relaxation.

.......... answer is xp < 4.

/
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A fundamental theorem for MILP Solution methods

What is the tightest LP relaxation? How good is it? The answer is...

(IP) min ¢’ x (R) min ¢’ x

st. seS, sit. s € conv(S).

> (R) is a relaxation of (IP) as S C conv(S), but is (R) LP relaxation?

Let A be a rational matrix, b a rational vector, and let
S={x € Z"|Ax < b}. Then the convex hull of S, denoted conv(S),
is a polyhedron. Also, the extreme points of conv(S) belong to S.

> By the thm, (R) is LP relaxation of (IP), as conv(S) is a polyhedron.
> (R) is tightest: solving (R) using simplex method also solves (IP).

> But, representation of conv(S) is difficult to find...
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Fundamental theorem for MILP, proof ST e

Let A be a rational matrix, b a rational vector, and let
S={x € Z"|Ax < b}. Then the convex hull of S, denoted conv(S),
is a polyhedron. Also, the extreme points of conv(S) belong to S.

Proof:
> conv(S) need not be a polyhedron if A is not rational. For example,
S=PNZ"and P ={x; > 0,% > 0,x2 < v2x1}.

» P is only candidate for conv(S), but (n,+/2n) ¢ S for all
n € N except when n= 0.
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Cutting plane methods Sclutioniethiots

> Integer program solution method by building better and better
polyhedral approximations of the convex hull of IP feasible set S.
For polyhedral (outer) approximation F; such that S C F;, solve

. . minimize ¢’ x
LP relaxation with F;: X
subject to s € F;.

> Let x'P solve LP relaxation. If x'P € S, then we are done.

» Otherwise, generate a cut of the form a”x < d such that

a'x*">d but a’x<d VxeS.
» Update polyhedral approximation F;; + F; N {x | a’x < d}. Solve
updated LP relaxation with Fj ;.

» Cutting plane method performance depends critically on “depth” of
the cut!
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Solution methods

Generating a cut

> Assume polyhedral approximation F; = {x | Ax = b, x > 0}
» Let x-P € argmin ¢ x, and assume x' is not integral
x€F;
» Re-arrange A: B opt basis of x'7; N index set of nonbasic variables
» Denote 3pq = (B71Aq)p, 300 = (B71b),
> At least one of 3y is not integral; let 3jo ¢ Z
(B_IAX)j:(B_lb)J x>0
—~ ~
- — A~ - -
> X E FI:XJ—F Z aijk = ajO = XJ—|— Z |_aijXk S ajO
kEN kEN
> x€ FNZ" = x;+ Z |_5ijXk < |_5j0J
keN
> But, X" + 3 33" = xF = 30 > 3]
keN
>

Thus, xj + > [djk]xk < |djo] is a desired cut
kEN
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Solution methods

Approximate solution methods

» Branch and bound and cutting plane methods provide exact optimal
solution, but sometimes we don't want to wait too long

» We can resort to approximate solution methods:

» LP relaxation might not provide integer optimal solutions, but
we can “round” them to integer feasible solutions.

» Lagrangian dual relaxation might not provide feasible solutions,
but from there we can construct suboptimal feasible solutions.

» Randomized algorithms (e.g., genetic algorithms, simulated
annealing) compare objective values at randomly chosen
feasible solutions — not much theoretical guarantee but
empirically they might find good suboptimal solutions.
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