Lecture 13

Feasible direction methods

Kin Cheong Sou Department of Mathematical Sciences Chalmers University of Technology and Göteborg University December 12, 2014

CHALMERS

Constrained optimization problem

Consider the problem to find

$$f^* = \inf \operatorname{mum} f(x), \tag{1a}$$

subject to
$$x \in X$$
, (1b)

 $X \subseteq \mathbb{R}^n$ nonempty, closed and convex; $f : \mathbb{R}^n \to \mathbb{R}$ is C^1 on X

► A natural solution idea is to generalize algorithms for unconstrained case.

Feasible-direction descent methods, steps

- Step 0. Determine a *starting point* $x_0 \in X$. Set k := 0
- Step 1. Determine a search direction $p_k \in \mathbb{R}^n$ such that p_k is a feasible descent direction. That is, $\exists \bar{\alpha} > 0$ s.t.
 - $> x_k + \alpha p_k \in X, \forall \alpha \in [0, \bar{\alpha}]$
 - $f(x_k + \alpha p_k) < f(x_k), \forall \alpha \in [0, \bar{\alpha}]$
- Step 2. Determine a step length $\alpha_k > 0$ such that $f(x_k + \alpha_k p_k) < f(x_k)$ and $x_k + \alpha_k p_k \in X$
- Step 3. Let $x_{k+1} := x_k + \alpha_k p_k$
- Step 4. If a *termination criterion* is fulfilled, then stop! Otherwise, let k := k + 1 and go to Step 1

- Similar form as the general method for unconstrained optimization
- Just as local as methods for unconstrained optimization
- Search directions typically based on the approximation of f—a "relaxation"
- ▶ Search direction often of the form $p_k = y_k x_k$, where $y_k \in X$ solves an approximate problem
- ▶ Line searches similar; note the maximum step
- ▶ Termination criteria and descent based on first-order optimality and/or fixed-point theory $(p_k \approx 0^n)$

Feasible-direction descent methods, polyhedral feasible set

 For general X, finding feasible descent direction and step length is difficult

- Assuming that X is polyhedral, these problems are not present (we will see)
- ightharpoonup Polyhedral set $X \Longrightarrow$ local mininma are KKT points; method will find KKT points

- ► The Frank-Wolfe method is based on a first-order approximation of f around the iterate x_k. This means that the relaxed problems are LPs, which can then be solved by using the Simplex method
- ▶ Remember the first-order optimality condition: If $x^* \in X$ is a local minimum of f on X then

$$\nabla f(x^*)^T(x-x^*) \ge 0, \qquad x \in X,$$

which is equivalent to

$$\underset{x \in X}{\text{minimize}} \quad \nabla f(x^*)^T (x - x^*) = 0$$

 Satisfying condition does not mean local min, but not satisfying leads to feasible descent direction ▶ Follows that if, given an iterate $x_k \in X$,

$$\underset{y \in X}{\text{minimize}} \quad \nabla f(x_k)^T (y - x_k) < 0,$$

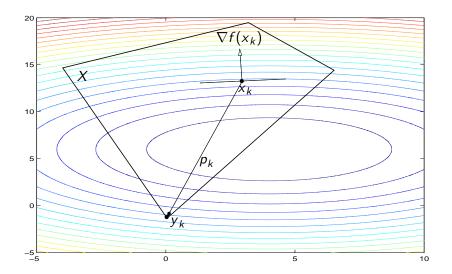
and y_k is an optimal solution to this LP problem, then the direction of $p_k := y_k - x_k$ is a feasible descent direction with respect to f at x_k

- ▶ Search direction towards an extreme point of X [one that is optimal in the LP over X with costs $c = \nabla f(x_k)$]
- ► This is the basis of the *Frank–Wolfe algorithm*

▶ We assume that X is bounded in order to ensure that the LP always has a finite optimal solution. The algorithm can be extended to work for unbounded polyhedra

▶ The search directions then are either towards an extreme point (finite optimal solution to LP) or in the direction of an extreme ray of *X* (unbounded solution to LP)

Both cases identified in the Simplex method



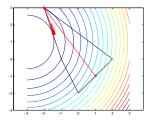
- Step 0. Find $x_0 \in X$ (e.g. any extreme point in X). Set k := 0
- Step 1. Find an optimal solution y_k to the problem to

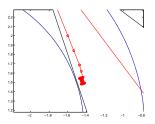
$$\underset{y \in X}{\text{minimize}} \quad z_k(y) := \nabla f(x_k)^T (y - x_k) \tag{2}$$

Let $p_k := y_k - x_k$ be the search direction

- Step 2. Approximately solve the problem to minimize $f(x_k + \alpha p_k)$ over $\alpha \in [0, 1]$. Let α_k be the step length
- Step 3. Let $x_{k+1} := x_k + \alpha_k p_k$
- Step 4. If, for example, $z_k(y_k)$ or α_k is close to zero, then terminate! Otherwise, let k := k + 1 and go to Step 1

- ▶ Suppose $X \subset \mathbb{R}^n$ nonempty polytope; f in C^1 on X
- ► In Step 2 of the Frank–Wolfe algorithm, we either use an exact line search or the Armijo step length rule
- ► Then: the sequence {x_k} is bounded and every limit point (at least one exists) is stationary;
- ▶ If f is convex on X, then every limit point is globally optimal





For a C^1 function f on X,

$$f$$
 convex on $X \iff f(y) \ge f(x) + \nabla f(x)^T (y - x), \quad x, y \in X$

▶ Suppose f is convex on X. Then for each k,

$$\forall y \in X, \ f(y) \ge f(x_k) + \nabla f(x_k)^T (y - x_k) \ge f(x_k) + \nabla f(x_k)^T (y_k - x_k)$$
 implying that $f^* \ge f(x_k) + \nabla f(x_k)^T (y_k - x_k)$. That is,
$$f(x_k) + \nabla f(x_k)^T (y_k - x_k) \text{ is a lower bound (LBD)}$$

▶ Keep the best LBD up to current iteration. In step 4, terminate if $f(x_k) - LBD$ is small enough

Notes Frank-Wolfe

 Frank-Wolfe uses linear approximations—works best for almost linear problems

- ► For highly nonlinear problems, the approximation is bad—the optimal solution may be far from an extreme point
- ► In order to find a near-optimum requires many iterations—the algorithm is slow
- ► Another reason is that the information generated (the extreme points) is forgotten. If we keep the linear subproblem, we can do much better by storing and utilizing this information

▶ Remember the Representation Theorem (special case for polytopes): Let $P = \{x \in \mathbb{R}^n \mid Ax = b; \ x \geq 0^n\}$, be nonempty and bounded, and $V = \{v^1, \dots, v^K\}$ be the set of extreme points of P. $x \in P$ iff it is a convex combination of the points in V, that is,

$$x = \sum_{i=1}^{K} \alpha_i v^i,$$

for some $\alpha_1, \dots, \alpha_k \geq 0$ such that $\sum_{i=1}^K \alpha_i = 1$

▶ The idea behind the Simplicial decomposition method is to generate the extreme points v^i which can be used to describe an optimal solution x^* , that is, the vectors v^i with positive weights α_i in

$$x^* = \sum_{i=1}^K \alpha_i v^i$$

▶ The process is still iterative: we generate a "working set" \mathcal{P}_k of indices i, optimize the function f over the convex hull of the known points, and check for stationarity and/or generate a new extreme point

Step 0. Find $x_0 \in X$, for example any extreme point in X. Set k := 0. Let $\mathcal{P}_0 := \emptyset$

Step 1. Let y^k be an optimal solution to the LP problem

$$\underset{y \in X}{\text{minimize}} \quad z_k(y) := \nabla f(x_k)^T (y - x_k)$$

Let $\mathcal{P}_{k+1}:=\mathcal{P}_k\cup\{k\}$ (i.e. index set for extreme points generated so far)

Step 2. Let (μ_{k+1}, ν_{k+1}) be an approximate solution to the restricted master problem (RMP) to

$$\begin{aligned} & \underset{(\mu,\nu)}{\text{minimize}} & & f\left(\mu x_k + \sum_{i \in \mathcal{P}_{k+1}} \nu_i y^i\right) \\ & \text{subject to} & & \mu + \sum_{i \in \mathcal{P}_{k+1}} \nu_i = 1, \\ & & & \mu, \nu_i \geq 0, & i \in \mathcal{P}_{k+1} \end{aligned}$$

Step 3. Let
$$x_{k+1} := \mu_{k+1} x_k + \sum_{i \in \mathcal{P}_{k+1}} (\nu_{k+1})_i y^i$$

Step 4. If, for example, $z_k(y^k)$ is close to zero, or if $\mathcal{P}_{k+1} = \mathcal{P}_k$ (why?), then terminate! Otherwise, let k := k+1 and go to Step 1

- ► This basic algorithm keeps all information generated, and adds one new extreme point in every iteration
- An alternative is to drop columns (vectors y^i) that have received a zero (or, low) weight, or to keep only a maximum number of vectors
- ightharpoonup Special case: maximum number of vectors kept $=1\Longrightarrow$ the Frank–Wolfe algorithm!
- We obviously improve the Frank–Wolfe algorithm by utilizing more information
- Unfortunately, solving RMP is more difficult than line search

- ▶ In theory, SD will converge after a finite number of iterations, as there are finite many extreme points.
- ▶ However, the restricted master problem is harder to solve when the set \mathcal{P}_k is large. Extreme cases: $|\mathcal{P}_k| = 1$, Frank-Wolfe and line search, easy! If \mathcal{P}_k contains all extreme points, the restricted is just the original problem in disguise.
- \blacktriangleright We fix this by in each iteration also removing some extreme points from \mathcal{P} . Practical rules.
 - ▶ Drop y^i if $\nu_i = 0$.
 - ▶ Limit the size of $|\mathcal{P}_k| = r$. (Again, r = 1 is Frank-Wolfe.)

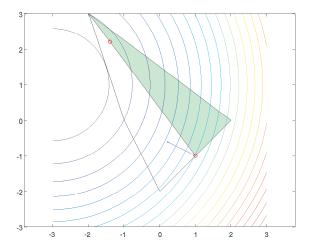


Figure : Example implementation of SD. Starting at $x_0 = (1, -1)^T$, and with \mathcal{P}_0 as the extreme points at $(2, 0)^T$, $|\mathcal{P}_k| \leq 2$.

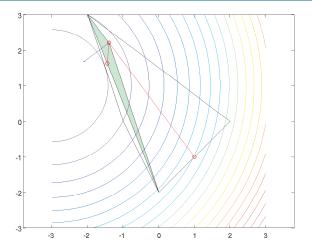


Figure : Example implementation of SD. Starting at $x_0 = (1, -1)^T$, and with \mathcal{P}_0 as the extreme points at $(2, 0)^T$, $|\mathcal{P}_k| \leq 2$.

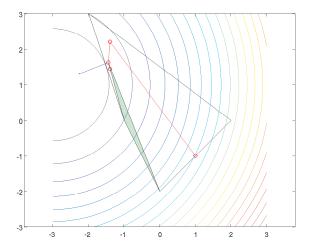


Figure : Example implementation of SD. Starting at $x_0 = (1, -1)^T$, and with \mathcal{P}_0 as the extreme points at $(2, 0)^T$, $|\mathcal{P}_k| \leq 2$.

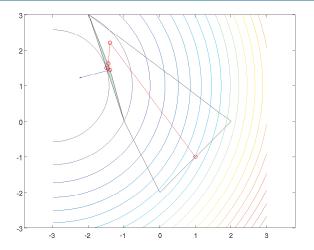


Figure : Example implementation of SD. Starting at $x_0 = (1, -1)^T$, and with \mathcal{P}_0 as the extreme points at $(2, 0)^T$, $|\mathcal{P}_k| \leq 2$.

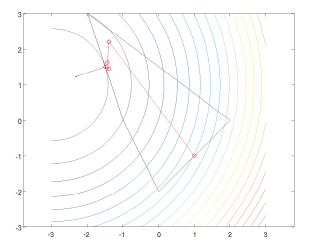
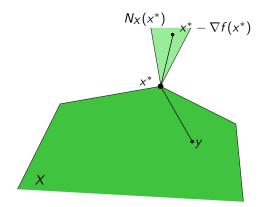


Figure : Example implementation of SD. Starting at $x_0 = (1, -1)^T$, and with \mathcal{P}_0 as the extreme points at $(2, 0)^T$, $|\mathcal{P}_k| \leq 2$.

- It does at least as well as the Frank–Wolfe algorithm: line segment $[x_k, y^k]$ feasible in RMP
- If x* unique then convergence is finite if the RMPs are solved exactly, and the maximum number of vectors kept is ≥ the number needed to span x*
- ► Much more efficient than the Frank–Wolfe algorithm in practice (consider the above FW example!)
- ▶ We can solve the RMPs efficiently, since the constraints are simple

▶ The gradient projection algorithm is based on the projection characterization of a stationary point: $x^* \in X$ is a stationary point if and only if, for any $\alpha > 0$,

$$x^* = \operatorname{Proj}_X[x^* - \alpha \nabla f(x^*)]$$

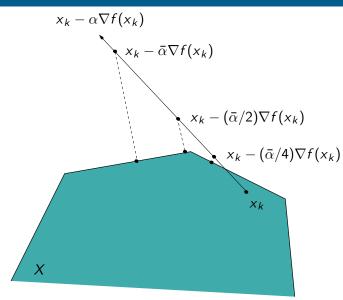


- ▶ Let $p := \operatorname{Proj}_X[x \alpha \nabla f(x)] x$, for any $\alpha > 0$. Then, if and only if x is non-stationary, p is a feasible descent direction of f at x
- ▶ The gradient projection algorithm is normally stated such that the line search is done over the *projection arc*, that is, we find a step length α_k for which

$$x_{k+1} := \operatorname{Proj}_{X}[x_{k} - \alpha_{k} \nabla f(x_{k})], \qquad k = 1, \dots$$
 (3)

has a good objective value. Use the Armijo rule to determine α_k

Note: gradient projection becomes steepest descent with Armijo line search when $X = \mathbb{R}^n$!



- ▶ Bottleneck: how can we compute projections?
- In general, we study the KKT conditions of the system and apply a simplex-like method.
- If we have a specially structured feasible polyhedron, projections may be easier to compute.
- Particular case: the unit simplex (the feasible set of the SD subproblems).

- ▶ Example: the feasible set is $S = \{x \in \mathbb{R}^n \mid 0 \le x_i \le 1, i = 1, ..., n\}$.
- ▶ Then $Proj_S(x) = z$, where

$$z_i = \begin{cases} 0, & x_i < 0, \\ x_i, & 0 \le x_i \le 1 \\ 1, & 1 < x_i, \end{cases}$$

for i = 1, ..., n.

 Exercise: prove this by applying the variational inequality (or KKT conditions) to the problem

$$\min_{z \in S} \frac{1}{2} \|x - z\|^2$$

- ▶ $X \subseteq \mathbb{R}^n$ nonempty, closed, convex; $f \in C^1$ on X;
- ▶ for the starting point $x_0 \in X$ it holds that the level set $lev_f(f(x_0))$ intersected with X is bounded
- In the algorithm (4), the step length α_k is given by the Armijo step length rule along the projection arc
- ▶ Then: the sequence $\{x_k\}$ is bounded;
- every limit point of $\{x_k\}$ is stationary;
- ▶ $\{f(x_k)\}$ descending, lower bounded, hence convergent
- ▶ Convergence arguments similar to steepest descent one

- ▶ Assume: $X \subseteq \mathbb{R}^n$ nonempty, closed, convex;
- $f \in C^1$ on X; f convex;
- ► an optimal solution x* exists
- In the algorithm (4), the step length α_k is given by the Armijo step length rule along the projection arc
- ▶ Then: the sequence $\{x_k\}$ converges to an optimal solution
- Note: with $X = \mathbb{R}^n \Longrightarrow$ convergence of steepest descent for convex problems with optimal solutions!

- ► A large-scale nonlinear network flow problem which is used to estimate traffic flows in cities
- ▶ Model over the small city of Sioux Falls in North Dakota, USA; 24 nodes, 76 links, and 528 pairs of origin and destination
- ► Three algorithms for the RMPs were tested—a Newton method and two gradient projection methods. MATLAB implementation.
- ▶ Remarkable difference—The Frank-Wolfe method suffers from very small steps being taken. Why? Many extreme points active = many routes used

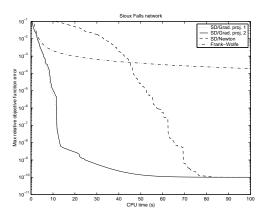


Figure : The performance of SD vs. FW on the Sioux Falls network