Lecture 13

Feasible direction methods

Kin Cheong Sou

Department of Mathematical Sciences

Chalmers University of Technology and Goteborg University
December 12, 2014

CHALMERS ‘ GOTEBORGS UNIVERSITET

Constrained optimization problem

» Consider the problem to find

f* = infimum f(x), (1a)
subject to x € X, (1b)

X C R" nonempty, closed and convex; f : R” — R is Clon X

» A natural solution idea is to generalize algorithms for
unconstrained case.

TMAO947 — Lecture 13 Feasible direction methods

Feasible-direction descent methods, steps

Step 0. Determine a starting point xg € X. Set k:=0

Step 1. Determine a search direction p, € R" such that p, is
a feasible descent direction. That is, 3@ > 0 s.t.

> xx + apx € X, Va € [0,a]
> f(xk +apk) < f(x), Ya € [0,4]

Step 2. Determine a step length o > 0 such that
f(xk + axpy) < f(xk) and xx + axp, € X

Step 3. Let xk41 1= Xk + axpy

Step 4. If a termination criterion is fulfilled, then stop!
Otherwise, let k := k+ 1 and go to Step 1

TMAO947 — Lecture 13 Feasible direction methods

>

Similar form as the general method for unconstrained
optimization

Just as local as methods for unconstrained optimization

Search directions typically based on the approximation of f—a
“relaxation”

Search direction often of the form p, =y, — xj, where
Y, € X solves an approximate problem

Line searches similar; note the maximum step

Termination criteria and descent based on first-order
optimality and/or fixed-point theory (p, ~ 0")

TMAO947 — Lecture 13 Feasible direction methods

Feasible-direction descent methods, polyhedral feasible set

» For general X, finding feasible descent direction and step length is
difficult

> Assuming that X is polyhedral, these problems are not present (we
will see)

> Polyhedral set X = local mininma are KKT points; method will
find KKT points

TMAO947 — Lecture 13 Feasible direction methods

LP-based algorithm, |: The Frank—Wolfe method Frank—Wolfe

» The Frank—Wolfe method is based on a first-order approximation of
f around the iterate x,. This means that the relaxed problems are
LPs, which can then be solved by using the Simplex method

» Remember the first-order optimality condition: If x* € X is a local
minimum of f on X then

VF(x*)T(x —x*) >0, x € X,
which is equivalent to

N *\T y*) —
minimize Vix*) (x—x*)=0

» Satisfying condition does not mean local min, but not satisfying
leads to feasible descent direction

TMAO947 — Lecture 13 Feasible direction methods

LP-based algorithm, |: The Frank—Wolfe method Frank—Wolfe

» Follows that if, given an iterate xx € X,

minimize V£ (xx)"(y — xx) <0,
yex

and y, is an optimal solution to this LP problem, then the direction
of p, :=y, — xx is a feasible descent direction with respect to f at
Xk

> Search direction towards an extreme point of X [one that is optimal
in the LP over X with costs ¢ = V(xx)]

> This is the basis of the Frank—Wolfe algorithm

TMAO947 — Lecture 13 Feasible direction methods

LP-based algorithm, |: The Frank—Wolfe method Frank—Wolfe

» We assume that X is bounded in order to ensure that the LP always
has a finite optimal solution. The algorithm can be extended to
work for unbounded polyhedra

» The search directions then are either towards an extreme point
(finite optimal solution to LP) or in the direction of an extreme ray
of X (unbounded solution to LP)

» Both cases identified in the Simplex method

TMAO947 — Lecture 13 Feasible direction methods

The search-direction problem Frank—Wolfe

L

|

TMAO947 — Lecture 13 Feasible direction methods

Algorithm description, Frank—Wolfe Frank—Wolfe

Step 0. Find xg € X (e.g. any extreme point in X). Set k :=0

Step 1. Find an optimal solution y, to the problem to

migierggize z(y) = VF(xe) T (y — xx) (2)

Let p, := y, — xk be the search direction

Step 2. Approximately solve the problem to minimize f(xx + ap,)
over a € [0,1]. Let ak be the step length

Step 3. Let Xxkt+1 = Xk + aupy

Step 4. If, for example, zx(y,) or ay is close to zero, then
terminate! Otherwise, let k := k + 1 and go to Step 1

TMAO947 — Lecture 13 Feasible direction methods

*Frank-Wolfe convergence Frank—Wolfe

Suppose X C R" nonempty polytope; f in Ct on X

v

> In Step 2 of the Frank—Wolfe algorithm, we either use an exact line
search or the Armijo step length rule

> Then: the sequence {xy} is bounded and every limit point (at least
one exists) is stationary;

» If f is convex on X, then every limit point is globally optimal

TMAO947 — Lecture 13 Feasible direction methods

Franke-Wolfe convergence Frank—Wolfe

TMAO947 — Lecture 13 Feasible direction methods

The convex case: Lower bounds Frank—Wolfe

» For a C! function f on X,

f convexon X <= f(y) > f(x)+VF(x)"(y —x), x,y€X

» Suppose f is convex on X. Then for each k,
Vy € X, fy) > fa)+VI(xa) T (y—x) = FOx)+V)T (ve—x)
implying that * > f(x¢) + VFf(xx) " (vk — xk). That is,
f(xx) + VF(x) " (vx — xx) is a lower bound (LBD)

» Keep the best LBD up to current iteration. In step 4, terminate if
f(xk) — LBD is small enough

TMAO947 — Lecture 13 Feasible direction methods

Notes Frank—Wolfe

» Frank—Wolfe uses linear approximations—works best for almost
linear problems

» For highly nonlinear problems, the approximation is bad—the
optimal solution may be far from an extreme point

» In order to find a near-optimum requires many iterations—the
algorithm is slow

> Another reason is that the information generated (the extreme
points) is forgotten. If we keep the linear subproblem, we can do
much better by storing and utilizing this information

TMAO947 — Lecture 13 Feasible direction methods

LP-based algorithm, Il: Simplicial decomposition Frank—Wolfe

> Remember the Representation Theorem (special case for polytopes):
Let P={x€R"| Ax = b; x > 0"}, be nonempty and bounded,
and V = {v!,... vK} be the set of extreme points of P. x € P iff
it is a convex combination of the points in V, that is,

K
x = g v,
i=1

for some o, ..., ax > 0 such that Z,K:l ai=1

TMAO947 — Lecture 13 Feasible direction methods

LP-based algorithm, Il: Simplicial decomposition Frank—Wolfe

» The idea behind the Simplicial decomposition method is to generate
the extreme points v' which can be used to describe an optimal
solution x*, that is, the vectors v’ with positive weights «; in

K
x* = g %
i=1

» The process is still iterative: we generate a “working set” Py of
indices i, optimize the function f over the convex hull of the known
points, and check for stationarity and/or generate a new extreme
point

TMAO947 — Lecture 13 Feasible direction methods

Algorithm description, Simplicial decomposition Frank—Wolfe

Step 0. Find x¢ € X, for example any extreme point in X. Set
k:=0. Let Py:=10

Step 1. Let y* be an optimal solution to the LP problem

minimize z(y) == VF(xx)" (y — xx)
yex

Let Pit1 := Px U {k} (i.e. index set for extreme points
generated so far)

TMAO947 — Lecture 13 Feasible direction methods

Algorithm description, Simplicial decomposition Frank—Wolfe

Step 2. Let (uk+1,vk+1) be an approximate solution to the
restricted master problem (RMP) to

mi(r:irp)ize f (,uxk + 2P 1/,-y,>
subject to p+ > cp, Vi=1,
w,vi >0, i € Pri1

Step 3. Let xki1 = phs1Xk + D iep,, (Vk41)iy'

Step 4. If, for example, zx(y¥) is close to zero, or if Pyi1 = Px
(why?), then terminate! Otherwise, let k :== k + 1 and go
to Step 1

TMAO947 — Lecture 13 Feasible direction methods

Algorithm description, Simplicial decomposition Frank—Wolfe

» This basic algorithm keeps all information generated, and adds one
new extreme point in every iteration

» An alternative is to drop columns (vectors y') that have received a
zero (or, low) weight, or to keep only a maximum number of vectors

» Special case: maximum number of vectors kept = 1 — the
Frank—Wolfe algorithm!

> We obviously improve the Frank—Wolfe algorithm by utilizing more
information

» Unfortunately, solving RMP is more difficult than line search

TMAO947 — Lecture 13 Feasible direction methods

Practical simplicial decomposition Frank—Wolfe

» In theory, SD will converge after a finite number of iterations, as
there are finite many extreme points.

» However, the restricted master problem is harder to solve when the
set Py is large. Extreme cases: |Px| = 1, Frank-Wolfe and line
search, easy! If P, contains all extreme points, the restricted is just
the original problem in disguise.

> We fix this by in each iteration also removing some extreme points
from P. Practical rules.

» Drop y' if v; = 0.
» Limit the size of |Px| = r. (Again, r =1 is Frank-Wolfe.)

TMAO947 — Lecture 13 Feasible direction methods

Simplicial decomposition illustration Frank—Wolfe

Figure : Example implementation of SD. Starting at xp = (1, —1)", and
with Py as the extreme points at (2,0)7, |Px| < 2.

TMAO947 — Lecture 13 Feasible direction methods

Simplicial decomposition illustration Frank—Wolfe

Figure : Example implementation of SD. Starting at xp = (1, —1)", and
with Py as the extreme points at (2,0)7, |Px| < 2.

TMAO947 — Lecture 13 Feasible direction methods

Simplicial decomposition illustration Frank—Wolfe

Figure : Example implementation of SD. Starting at xp = (1, —1)", and
with Py as the extreme points at (2,0)7, |Px| < 2.

TMAO947 — Lecture 13 Feasible direction methods

Simplicial decomposition illustration Frank—Wolfe

Figure : Example implementation of SD. Starting at xp = (1, —1)", and
with Py as the extreme points at (2,0)7, |Px| < 2.

TMAO947 — Lecture 13 Feasible direction methods

Simplicial decomposition illustration Frank—Wolfe

Figure : Example implementation of SD. Starting at xp = (1, —1)", and
with Py as the extreme points at (2,0)7, |Px| < 2.

TMAO947 — Lecture 13 Feasible direction methods

*Simplicial decomposition convergence Frank—Wolfe

> |t does at least as well as the Frank—Wolfe algorithm: line segment
[xk, y¥] feasible in RMP

> If x* unique then convergence is finite if the RMPs are solved
exactly, and the maximum number of vectors kept is > the number
needed to span x*

» Much more efficient than the Frank—Wolfe algorithm in practice
(consider the above FW example!)

» We can solve the RMPs efficiently, since the constraints are simple

TMAO947 — Lecture 13 Feasible direction methods

The gradient projection algorithm Gradient projection

> The gradient projection algorithm is based on the projection
characterization of a stationary point: x* € X is a stationary point
if and only if, for any o > 0,

x* = Projx[x* — aVf(x")]

Nx(X*)

x; — VF(x*)

TMA947 — Lecture 13 Feasible direction methods

Gradient projection algorithms Gradient projection

> Let p :=Projx[x — aVf(x)] — x, for any @ > 0. Then, if and only
if x is non-stationary, p is a feasible descent direction of f at x

» The gradient projection algorithm is normally stated such that the
line search is done over the projection arc, that is, we find a step
length ay for which

X1 = Projx[xk — axVF(xk)], k=1,... 3)

has a good objective value. Use the Armijo rule to determine

> Note: gradient projection becomes steepest descent with Armijo line
search when X = R"!

TMAO947 — Lecture 13 Feasible direction methods

Gradient projection algorithms Gradient projection

xx —aVif(xg)

X — aVF(xg)

. xic— (8/2)VF(xi)

xk — (a/4)VF(xk)

TMA947 — Lecture 13 Feasible direction methods

Gradient projection algorithms Gradient projection

v

Bottleneck: how can we compute projections?

> In general, we study the KKT conditions of the system and apply a
simplex-like method.

» If we have a specially structured feasible polyhedron, projections
may be easier to compute.

> Particular case: the unit simplex (the feasible set of the SD
subproblems).

TMAO947 — Lecture 13 Feasible direction methods

Easy projections Gradient projection

> Example: the feasiblesetis S={x € R"|0< x; <1,i=1,...,n}.

> Then Projs(x) = z, where

0, x; < 0,
zi=4x%x, 0<x<1
1 1< x,

fori=1,...,n.

> Exercise: prove this by applying the variational inequality (or KKT
conditions) to the problem

. 1
mines 5 x — 2]

TMAO947 — Lecture 13 Feasible direction methods

*Convergence, | ient projection

» X CR" nonempty, closed, convex; f € C! on X;

> for the starting point xo € X it holds that the level set levs (f(xq))
intersected with X is bounded

> In the algorithm (4), the step length « is given by the Armijo step
length rule along the projection arc

> Then: the sequence {xy} is bounded;
> every limit point of {xx} is stationary;
> {f(xk)} descending, lower bounded, hence convergent

» Convergence arguments similar to steepest descent one

TMAO947 — Lecture 13 Feasible direction methods

*Convergence, |l ient projection

> Assume: X C R" nonempty, closed, convex;
» fe ClonX;f convex;
> an optimal solution x* exists

> In the algorithm (4), the step length « is given by the Armijo step
length rule along the projection arc

> Then: the sequence {xy} converges to an optimal solution

» Note: with X = R"” = convergence of steepest descent for convex
problems with optimal solutions!

TMAO947 — Lecture 13 Feasible direction methods

An illustration of FW vs. SD, | Gradient projection

v

A large-scale nonlinear network flow problem which is used to
estimate traffic flows in cities

» Model over the small city of Sioux Falls in North Dakota, USA; 24
nodes, 76 links, and 528 pairs of origin and destination

> Three algorithms for the RMPs were tested—a Newton method and
two gradient projection methods. MATLAB implementation.

» Remarkable difference—The Frank—Wolfe method suffers from very
small steps being taken. Why? Many extreme points active = many
routes used

TMAO947 — Lecture 13 Feasible direction methods

An illustration of FW vs. SD, | Gradient projection

Sioux Falls network

10° —— T T T T T T T
\ AN SD/Grad. proj. 1
R — SD/Grad. proj. 2
w2 L\ ~. - - SDINewton |
N v — - Frank-Wolfe
3 S~ AN]
10° F SN
Nl
| ~ e
10 F \ 9
N
10° F \]
\
10° L " 1

Max relative objective function error

0 10 20 30 40 60 70 80 90 100

50
CPU time (s)

Figure : The performance of SD vs. FW on the Sioux Falls network

A947 — Lecture 13 Feasible direction methods

	Frank–Wolfe method
	Gradient projection

