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Penalty functions, I Penalties

◮ Consider the optimization problem to

minimize f (x),

subject to x ∈ S ,
(1)

where S ⊂ R
n is non-empty, closed, and f : Rn → R is differentiable

◮ Basic idea behind all penalty methods: to replace the problem (1)
with the equivalent unconstrained one:

minimize f (x) + χS (x),

where

χS(x) =

{
0, if x ∈ S ,

+∞, otherwise

is the indicator function of the set S
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Penalty functions, II Penalties

◮ Feasibility is top priority; only when achieving feasibility can we
concentrate on minimizing f

◮ Computationally bad: non-differentiable, discontinuous, and even
not finite (though it is convex provided S is convex).

◮ Better: numerical “warning” before becoming infeasible or
near-infeasible

◮ Approximate the indicator function with a numerically better
behaving function
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Exterior penalty methods, I Exterior penalty

◮ SUMT (Sequential Unconstrained Minimization Techniques) devised
in the late 1960s by Fiacco and McCormick; still among the more
popular ones for some classes of problems, although there are later
modifications that are more often used

◮ Suppose

S = { x ∈ R
n | gi(x) ≤ 0, i = 1, . . . ,m,

hj(x) = 0, j = 1, . . . , ℓ },

gi ∈ C (Rn), i = 1, . . . ,m, hj ∈ C (Rn), j = 1, . . . , ℓ

◮ Choose a C 0 function ψ : R → R+ such that ψ(s) = 0 if and only if
s = 0 [typical examples of ψ(·) will be ψ1(s) = |s|, or ψ2(s) = s2].
Approximation to χS :

νχ̌S (x) := ν

( m∑

i=1

ψ
(
max{0, gi(x)}

)
+

ℓ∑

j=1

ψ
(
hj(x)

))
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Exterior penalty methods, II Exterior penalty

◮ S = {x | −x ≤ 0, x ≤ 1}

◮ Indicator function

χS(x) =

{
0 if 0 ≤ x ≤ 1

∞ otherwise

◮ νχ̌S approximates χS from
below (νχ̌S ≤ χS )

◮ Penalty function ψ(s) = s2

◮ Approximate function (i.e. substitute for indicator function)

νχ̌S = ν
(
(max{0, x − 1})2 + (max{0,−x})2

)
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Example Exterior penalty

◮ ν > 0 is penalty parameter

◮ νχ̌S (x) → χS (x) as ν → ∞.

−0.5 0 0.5 1 1.5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

 

 
ν = 1
ν = 10
ν = 100

◮ Approximate function (i.e. substitute for indicator function)

νχ̌S = ν
(
(max{0, x − 1})2 + (max{0,−x})2

)
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Example Exterior penalty

◮ Let S = { x ∈ R
2 | −x2 ≤ 0, (x1 − 1)2 + x22 = 1 }

◮ Let ψ(s) = s2. Then,

χ̌S (x) = [max{0,−x2}]
2 + [(x1 − 1)2 + x22 − 1]2

◮ Graph of χ̌S and S :

TMA947 – Lecture 14 Constrained optimization 7 / 28



Properties of the penalty problem Exterior penalty

◮ Assume (1) has an optimal solution x∗

◮ Assume that for every ν > 0 the problem to

minimize
x∈Rn

f (x) + νχ̌S (x) (2)

has at least one optimal solution x∗ν

◮ χ̌S ≥ 0; χ̌S(x) = 0 if and only if x ∈ S

◮ The Relaxation Theorem states that the inequality

f (x∗ν) + νχ̌S(x
∗

ν) ≤ f (x∗) + νχ̌S (x
∗) = f (x∗)

holds for every positive ν (lower bound on the optimal value)

◮ The problem (2) is convex if (1) and ψ(s) are, and ψ(s) increasing
for s ≥ 0.
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The algorithm and its convergence properties, I Exterior penalty

Assume that the problem (1) possesses optimal solutions. Then, as
ν → +∞ every limit point of the sequence {x∗ν} of globally optimal
solutions to (2) is globally optimal in the problem (1)

◮ Of interest for convex problems, since global minimum can be found
relatively easily.

◮ Statement not very useful for general nonconvex problems.
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The algorithm and its convergence properties, II Exterior penalty

◮ Let f , gi (i = 1, . . . ,m), and hj (j = 1, . . . , ℓ), be in C 1

Assume that the penalty function ψ is in C 1 and that ψ′(s) ≥ 0 for
all s ≥ 0. Consider a sequence νk → ∞.

xk stationary in (2) with νk
xk → x̂ as k → +∞

LICQ holds at x̂
x̂ feasible in (1)





=⇒ x̂ stationary (KKT) in (1)

◮ From the proof we obtain estimates of Lagrange multipliers: the
optimality conditions of (2) gives that

µ∗

i ≈ νkψ
′[max{0, gi(xk)}] and λ∗j ≈ νkψ

′[hj(xk)]
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Computational considerations Exterior penalty

◮ When the penalty parameter ν is very large, the unconstrained
minimization subproblem becomes very badly conditioned, and hard
to solve.

◮ In subproblem k we must start at a point x such that x∗
νk

≈ x .

◮ If we increase the penalty slowly a good guess is that x∗νk ≈ x∗νk−1
.

◮ This guess can be improved.
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Interior penalty methods, I Interior penalty

◮ In contrast to exterior methods, interior penalty, or barrier, function
methods construct approximations inside the set S and set a barrier
against leaving it

◮ If a globally optimal solution to (1) is on the boundary of the
feasible region, the method generates a sequence of interior points
that converge to it

◮ We assume that the feasible set has the following form:

S = { x ∈ R
n | gi(x) ≤ 0, i = 1, . . . ,m }

◮ We need to assume that there exists a strictly feasible point x̂ ∈ R
n,

i.e., such that gi(x̂) < 0, i = 1, . . . ,m
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Interior penalty methods, II Interior penalty

◮ Approximation of χS (from above, that is, χ̂S ≥ χS):

νχ̂S (x) :=

{
ν
∑m

i=1 φ[gi (x)], if gi (x) < 0, i = 1, . . . ,m,

+∞, otherwise,

where φ : R− → R+ is a continuous, non-negative function such
that φ(sk ) → ∞ for all negative sequences {sk} converging to zero

◮ Examples: φ1(s) = −s−1; φ2(s) = − log[min{1,−s}]

◮ The differentiable logarithmic barrier function φ̃2(s) = − log(−s)
gives rise to the same convergence theory, if we drop the
non-negativity requirement on φ

◮ Approximate function convex if gi and φ are convex functions, and
φ(s) increasing for s < 0.
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Example Interior penalty

Figure : Feasible set is S = {x | −x ≤ 0, x ≤ 1}. Barrier function
φ(s) = −1/s, barrier parameter ν = 0.01.
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Example Interior penalty

Consider S = { x ∈ R | −x ≤ 0 }. Choose φ = φ1 = −s−1. Graph of the
barrier function νχ̂S in below figure for various values of ν (note how
νχ̂S converges to χS as ν ↓ 0!):
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Algorithm and its convergence Interior penalty

◮ Penalty problem:

minimize f (x) + νχ̂S (x) (3)

◮ Convergence of global solutions to (3) to globally optimal solutions
to (1) straightforward. Result for stationary (KKT) points more
practical:

Let f and gi (i = 1, . . . ,m), an φ be in C 1, and that φ′(s) ≥ 0 for
all s < 0. Consider sequence νk → 0. Then:

xk stationary in (3) with νk
xk → x̂ as k → +∞

LICQ holds at x̂



 =⇒ x̂ stationary (KKT) in (1)

◮ If we use φ(s) = φ1(s) = −1/s, then φ′(s) = 1/s2, and the
sequence {νk/g

2
i (xk)} → µ̂i .
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Interior point (polynomial) method for LP, I Interior penalty

◮ Consider the LP

minimize − bT y ,

subject to AT y + s = c ,

s ≥ 0n,

(4)

and the corresponding system of optimality conditions:

AT y + s = c ,

Ax = b,

x ≥ 0n, s ≥ 0n, xT s = 0
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Interior point (polynomial) method for LP, II Interior penalty

◮ Apply a barrier method for (4). Subproblem:

minimize − bT y − ν

n∑

j=1

log(sj)

subject to AT y + s = c

◮ The KKT conditions for this problem is:

AT y + s = c ,

Ax = b,

xj sj = ν, j = 1, . . . , n

(5)

◮ Perturbation in the complementary conditions!
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Interior point (polynomial) method for LP, III Interior penalty

Optimal solutions to subproblems

minimize − bT y − ν
n∑

j=1

log(sj)

subject to AT y + s = c

for different ν’s form the central
path.
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Interior point (polynomial) method for LP, IV Interior penalty

◮ Using a Newton method for the system (5) yields a very effective
LP method. If the system is solved exactly we trace the central path

to an optimal solution, but polynomial algorithms are generally
implemented such that only one Newton step is taken for each value
of νk before it is reduced

◮ A polynomial algorithm finds, in theory at least (disregarding the
finite precision of computer arithmetic), an optimal solution within a
number of floating-point operations that are polynomial in the data
size of the problem

◮ Provide guarantee that LP can be solved in polynomial time (the
simplex method computation effort can grow exponentially, but this
is rare).
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Sequential quadratic programming (SQP), first attempt SQP

Consider problem

minimize
x

f (x)

subject to g(x) ≤ 0

h(x) = 0

◮ We have good solution methods for quadratic programs (QP)
(e.g., simplicial decomposition and gradient projection method)

◮ At iterate xk , approximate original problem with QP subproblem.
Find search direction p by solving QP subproblem

minimize
p

1
2p

T∇2f (xk )p +∇f (xk )
T
p

subject to gi(xk ) +∇gi(xk )
T
p ≤ 0, i = 1, . . . ,m

hj(xk) +∇hj(xk )
T
p = 0, j = 1, . . . , l

◮ Suggested method does not always work!
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Sequential quadratic programming (SQP), first attempt SQP

Consider problem

min
x

−x1 −
1
2 (x2)

2

s.t. (x1)
2
+ (x2)

2
− 1 = 0
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decreasing objective

Optimal solution (1, 0)T , consider QP subproblem at x1 = 1.1, x2 = 0:

minimize
p

−p1 −
1
2 (p2)

2

subject to p1 + 0.0955 = 0

QP subproblem unbounded – bad linear approx. of nonlinear constraint!
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SQP, improved QP subproblem SQP

◮ Linearized constraints might be too inaccurate!

◮ Account for nonlinear constraints in objective – Lagrangian idea.

L(xk , µk , λk) = f (xk) + µT
k g(xk ) + λTk h(xk ).

◮ Solve (improved) QP subproblem to find search direction p:

minimize
p

1
2p

T∇2
xxL(xk , µk , λk)p +∇f (xk )

T
p

subject to gi(xk) +∇gi(xk )
T
p ≤ 0, i = 1, . . . ,m

hj(xk ) +∇hj(xk )
T
p = 0, j = 1, . . . , l

◮ Direction p, with multipliers µk+1, λk+1, define Newton step for
solving (nonlinear) KKT conditions (see text for more).

◮ Lagrangian Hessian ∇2
xxL(xk , µk , λk ) may not be positive definite.
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SQP, working QP subproblem SQP

◮ Given xk ∈ R
n and a vector (µk , λk) ∈ R

m
+ × R

ℓ, choose a positive
definite matrix Bk ∈ R

n×n. Bk ≈ ∇2
xxL(xk , µk , λk )

◮ Solve

minimize
p

1

2
pTBkp +∇f (xk )

Tp, (6a)

subject to gi(xk ) +∇gi (xk)
Tp ≤ 0, i = 1, . . . ,m, (6b)

hj(xk) +∇hj(xk)
T p = 0, j = 1, . . . , ℓ (6c)

◮ Working version of SQP search direction subproblem

◮ Quadratic convergence near KKT points. What about global
convergence? Perform line search with some merit function.
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Basic SQP, algorithm steps SQP

1. Initialize iterate with (x0, µ0, λ0), B0 and merit function M .

2. At iteration k with (xk , µk , λk) and Bk , solve QP subproblem for
search direction pk :

minimize
p

1
2p

TBkp +∇f (xk)
T
p

subject to gi(xk ) +∇gi (xk)
T
p ≤ 0, i = 1, . . . ,m

hj(xk ) +∇hj(xk)
T
p = 0, j = 1, . . . , l

Let µ∗

k and λ∗k be optimal multipliers of QP subproblem. Define
∆x = pk , ∆µ = µ∗

k − µk , ∆λ = λ∗k − λk .

3. Perform line search to find αk > 0 s.t. M(xk + αk∆x) < M(xk).

4. Update iterates:
xk+1 = xk + αk∆x , µk+1 = µk + αk∆µ, λk+1 = λk + αk∆λ.

5. Stop if converge, otherwise update Bk to Bk+1; go to step 2.
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Merit SQP, exact penalty function SQP

Merit function as non-differentiable exact penalty function Pe :

χ̌S(x) :=
m∑

i=1

maximum {0, gi(x)}+
ℓ∑

j=1

|hj(x)|,

Pe(x) := f (x) + νχ̌S (x)

◮ For large enough ν, solution to QP subproblem (6) defines a
descent direction for Pe at (xk , µk , λk).

◮ For large enough ν, reduction in Pe implies progress towards KKT
point in the original constrained optimization problem.

◮ Compare convergence results for exterior penalty methods.
◮ See text for more (Proposition 13.10).
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∗Convergence of merit SQP method SQP

◮ Combining the descent direction property and exact penalty function
property, one can prove convergence of the merit SQP method.

◮ Convergence of the SQP method towards KKT points can be
established under additional conditions on the choices of matrices
{Bk}

1. Matrices Bk bounded
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Remarks SQP

◮ Selecting the value of ν is difficult

◮ No guarantees that the subproblems (6) are feasible; we assumed

above that the problem is well-defined

◮ Pe is only continuous; some step length rules infeasible

◮ Fast convergence not guaranteed (the Maratos effect)

◮ Penalty methods in general suffer from ill-conditioning. For some
problems the ill-conditioning is avoided

◮ Exact penalty SQP methods suffer less from ill-conditioning, and
the number of QP:s needed can be small. They can, however, cost
a lot computationally

◮ fmincon in MATLAB is an SQP-based solver
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