Lecture 14

Constrained optimization

Kin Cheong Sou Department of Mathematical Sciences Chalmers University of Technology and Göteborg University December 16, 2014

CHALMERS

Consider the optimization problem to

minimize
$$f(x)$$
,
subject to $x \in S$, (1)

where $S \subset \mathbb{R}^n$ is non-empty, closed, and $f: \mathbb{R}^n \to \mathbb{R}$ is differentiable

▶ Basic idea behind all penalty methods: to replace the problem (1) with the equivalent unconstrained one:

minimize
$$f(x) + \chi_S(x)$$
,

where

$$\chi_{\mathcal{S}}(x) = \begin{cases} 0, & \text{if } x \in \mathcal{S}, \\ +\infty, & \text{otherwise} \end{cases}$$

is the *indicator function* of the set S

- ► Feasibility is top priority; only when achieving feasibility can we concentrate on minimizing *f*
- ► Computationally bad: non-differentiable, discontinuous, and even not finite (though it is convex provided *S* is convex).
- Better: numerical "warning" before becoming infeasible or near-infeasible
- Approximate the indicator function with a numerically better behaving function

- SUMT (Sequential Unconstrained Minimization Techniques) devised in the late 1960s by Fiacco and McCormick; still among the more popular ones for some classes of problems, although there are later modifications that are more often used
- Suppose

$$S = \{ x \in \mathbb{R}^n \mid g_i(x) \leq 0, \quad i = 1, \dots, m, \\ h_j(x) = 0, \quad j = 1, \dots, \ell \},$$

$$g_i \in C(\mathbb{R}^n)$$
, $i = 1, \ldots, m$, $h_j \in C(\mathbb{R}^n)$, $j = 1, \ldots, \ell$

► Choose a C^0 function $\psi : \mathbb{R} \to \mathbb{R}_+$ such that $\psi(s) = 0$ if and only if s = 0 [typical examples of $\psi(\cdot)$ will be $\psi_1(s) = |s|$, or $\psi_2(s) = s^2$]. Approximation to χ_S :

$$\nu \check{\chi}_{\mathcal{S}}(x) := \nu \bigg(\sum_{i=1}^m \psi \big(\max\{0, g_i(x)\} \big) + \sum_{j=1}^\ell \psi \big(h_j(x) \big) \bigg)$$

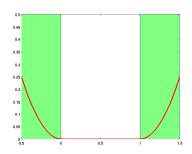
►
$$S = \{x \mid -x \le 0, x \le 1\}$$

► Indicator function

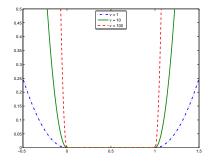
$$\chi_{\mathcal{S}}(x) = \begin{cases} 0 & \text{if } 0 \le x \le 1 \\ \infty & \text{otherwise} \end{cases}$$

- $\nu \check{\chi}_S$ approximates χ_S from below $(\nu \check{\chi}_S < \chi_S)$
 - ▶ Penalty function $\psi(s) = s^2$
 - ► Approximate function (i.e. substitute for indicator function)

$$u \check{\chi}_{S} = \nu \Big((\max\{0, x - 1\})^2 + (\max\{0, -x\})^2 \Big)$$



- $\triangleright \nu > 0$ is penalty parameter
- $\blacktriangleright \ \nu \check{\chi}_S(x) \to \chi_S(x) \text{ as } \nu \to \infty.$



► Approximate function (i.e. substitute for indicator function)

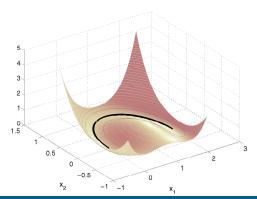
$$\nu \check{\chi}_{S} = \nu \Big((\max\{0, x - 1\})^{2} + (\max\{0, -x\})^{2} \Big)$$

▶ Let
$$S = \{ x \in \mathbb{R}^2 \mid -x_2 \le 0, (x_1 - 1)^2 + x_2^2 = 1 \}$$

▶ Let $\psi(s) = s^2$. Then,

$$\check{\chi}_{S}(x) = [\max\{0, -x_{2}\}]^{2} + [(x_{1} - 1)^{2} + x_{2}^{2} - 1]^{2}$$

▶ Graph of $\check{\chi}_S$ and S:



- Assume (1) has an optimal solution x*
- Assume that for every $\nu > 0$ the problem to

$$\underset{x \in \mathbb{R}^n}{\text{minimize}} \quad f(x) + \nu \check{\chi}_{\mathcal{S}}(x) \tag{2}$$

has at least one optimal solution x_{ν}^*

- $\check{\chi}_S \ge 0$; $\check{\chi}_S(x) = 0$ if and only if $x \in S$
- ► The Relaxation Theorem states that the inequality

$$f(x_{\nu}^*) + \nu \check{\chi}_S(x_{\nu}^*) \le f(x^*) + \nu \check{\chi}_S(x^*) = f(x^*)$$

holds for every positive ν (lower bound on the optimal value)

▶ The problem (2) is convex if (1) and $\psi(s)$ are, and $\psi(s)$ increasing for $s \ge 0$.

The algorithm and its convergence properties, I Exterior penalty

Assume that the problem (1) possesses optimal solutions. Then, as $\nu \to +\infty$ every limit point of the sequence $\{x_{\nu}^*\}$ of globally optimal solutions to (2) is globally optimal in the problem (1)

- Of interest for convex problems, since global minimum can be found relatively easily.
- Statement not very useful for general nonconvex problems.

The algorithm and its convergence properties, II Exterior penalty

▶ Let f, g_i (i = 1, ..., m), and h_i $(j = 1, ..., \ell)$, be in C^1

Assume that the penalty function ψ is in C^1 and that $\psi'(s) \geq 0$ for all $s \geq 0$. Consider a sequence $\nu_k \to \infty$.

$$\begin{array}{c} x_k \text{ stationary in (2) with } \nu_k \\ x_k \to \hat{x} \text{ as } k \to +\infty \\ \text{LICQ holds at } \hat{x} \\ \hat{x} \text{ feasible in (1)} \end{array} \implies \hat{x} \text{ stationary (KKT) in (1)}$$

► From the proof we obtain estimates of Lagrange multipliers: the optimality conditions of (2) gives that

$$\mu_i^* \approx \nu_k \psi'[\max\{0, g_i(x_k)\}]$$
 and $\lambda_i^* \approx \nu_k \psi'[h_i(x_k)]$

ightharpoonup When the penalty parameter ν is very large, the unconstrained minimization subproblem becomes very badly conditioned, and hard to solve.

▶ In subproblem k we must start at a point x such that $x_{\nu_k}^* \approx x$.

- ▶ If we increase the penalty slowly a good guess is that $x_{\nu_k}^* \approx x_{\nu_{k-1}}^*$.
- ▶ This guess can be improved.

- ▶ In contrast to exterior methods, interior penalty, or *barrier*, function methods construct approximations *inside* the set *S* and set a barrier against leaving it
- ▶ If a globally optimal solution to (1) is on the boundary of the feasible region, the method generates a sequence of interior points that converge to it
- ▶ We assume that the feasible set has the following form:

$$S = \{ x \in \mathbb{R}^n \mid g_i(x) \le 0, \quad i = 1, ..., m \}$$

▶ We need to assume that there exists a *strictly feasible* point $\hat{x} \in \mathbb{R}^n$, i.e., such that $g_i(\hat{x}) < 0$, i = 1, ..., m

▶ Approximation of χ_S (from *above*, that is, $\hat{\chi}_S \ge \chi_S$):

$$\nu\hat{\chi}_{\mathcal{S}}(x) := \begin{cases} \nu \sum_{i=1}^m \phi[g_i(x)], & \text{if } g_i(x) < 0, \ i = 1, \dots, m, \\ +\infty, & \text{otherwise}, \end{cases}$$

where $\phi: \mathbb{R}_- \to \mathbb{R}_+$ is a continuous, non-negative function such that $\phi(s_k) \to \infty$ for all *negative* sequences $\{s_k\}$ converging to zero

- Examples: $\phi_1(s) = -s^{-1}$; $\phi_2(s) = -\log[\min\{1, -s\}]$
- ▶ The differentiable *logarithmic barrier function* $\widetilde{\phi}_2(s) = -\log(-s)$ gives rise to the same convergence theory, if we drop the non-negativity requirement on ϕ
- ▶ Approximate function convex if g_i and ϕ are convex functions, and $\phi(s)$ increasing for s < 0.

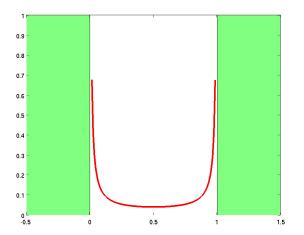
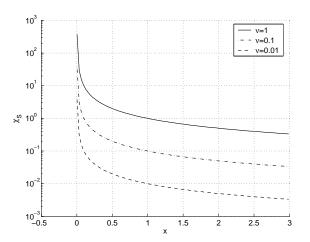


Figure : Feasible set is $S = \{x \mid -x \le 0, x \le 1\}$. Barrier function $\phi(s) = -1/s$, barrier parameter $\nu = 0.01$.

Consider $S = \{ x \in \mathbb{R} \mid -x \leq 0 \}$. Choose $\phi = \phi_1 = -s^{-1}$. Graph of the barrier function $\nu \hat{\chi}_S$ in below figure for various values of ν (note how $\nu \hat{\chi}_S$ converges to χ_S as $\nu \downarrow 0!$):



▶ Penalty problem:

minimize
$$f(x) + \nu \hat{\chi}_S(x)$$
 (3)

Convergence of global solutions to (3) to globally optimal solutions to (1) straightforward. Result for stationary (KKT) points more practical:

Let f and g_i $(i=1,\ldots,m)$, an ϕ be in C^1 , and that $\phi'(s) \geq 0$ for all s < 0. Consider sequence $\nu_k \to 0$. Then:

$$\begin{array}{c} x_k \text{ stationary in (3) with } \nu_k \\ x_k \to \hat{x} \text{ as } k \to +\infty \\ \text{LICQ holds at } \hat{x} \end{array} \} \implies \hat{x} \text{ stationary (KKT) in (1)}$$

If we use $\phi(s) = \phi_1(s) = -1/s$, then $\phi'(s) = 1/s^2$, and the sequence $\{\nu_k/g_i^2(x_k)\} \to \hat{\mu}_i$.

Consider the LP

minimize
$$-b^T y$$
,
subject to $A^T y + s = c$,
 $s \ge 0^n$, (4)

and the corresponding system of optimality conditions:

$$A^{T}y + s = c,$$

$$Ax = b,$$

$$x \ge 0^{n}, \ s \ge 0^{n}, \ x^{T}s = 0$$

▶ Apply a barrier method for (4). Subproblem:

minimize
$$-b^T y - \nu \sum_{j=1}^n \log(s_j)$$

subject to $A^T y + s = c$

▶ The KKT conditions for this problem is:

$$A^{T}y + s = c,$$

 $Ax = b,$
 $x_{j}s_{j} = \nu, \quad j = 1, ..., n$

$$(5)$$

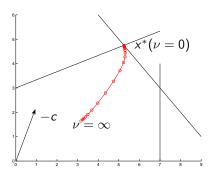
Perturbation in the complementary conditions!

Optimal solutions to subproblems

minimize
$$-b^T y - \nu \sum_{j=1}^{n} \log(s_j)$$

subject to $A^T y + s = c$

for different ν 's form the central path.



- Using a Newton method for the system (5) yields a very effective LP method. If the system is solved exactly we trace the *central path* to an optimal solution, but *polynomial* algorithms are generally implemented such that only one Newton step is taken for each value of ν_k before it is reduced
- ▶ A polynomial algorithm finds, in theory at least (disregarding the finite precision of computer arithmetic), an optimal solution within a number of floating-point operations that are polynomial in the data size of the problem
- Provide guarantee that LP can be solved in polynomial time (the simplex method computation effort can grow exponentially, but this is rare).

- We have good solution methods for quadratic programs (QP)
 (e.g., simplicial decomposition and gradient projection method)
- At iterate x_k , approximate original problem with QP subproblem. Find search direction p by solving QP subproblem

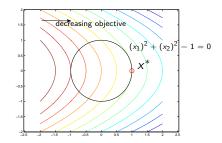
minimize
$$\frac{1}{2}p^T \nabla^2 f(x_k)p + \nabla f(x_k)^T p$$

subject to $g_i(x_k) + \nabla g_i(x_k)^T p \leq 0, \quad i = 1, \dots, m$
 $h_j(x_k) + \nabla h_j(x_k)^T p = 0, \quad j = 1, \dots, I$

Suggested method does not always work!

Consider problem

$$\min_{x} -x_1 - \frac{1}{2}(x_2)^2$$
s.t. $(x_1)^2 + (x_2)^2 - 1 = 0$



Optimal solution $(1,0)^T$, consider QP subproblem at $x_1 = 1.1$, $x_2 = 0$:

minimize
$$-p_1 - \frac{1}{2}(p_2)^2$$

subject to $p_1 + 0.0955 = 0$

QP subproblem unbounded – bad linear approx. of nonlinear constraint!

- Linearized constraints might be too inaccurate!
- Account for nonlinear constraints in objective Lagrangian idea.

$$L(x_k, \mu_k, \lambda_k) = f(x_k) + \mu_k^T g(x_k) + \lambda_k^T h(x_k).$$

Solve (improved) QP subproblem to find search direction p:

minimize
$$\frac{1}{2}p^T \nabla^2_{xx} L(x_k, \mu_k, \lambda_k) p + \nabla f(x_k)^T p$$

subject to $g_i(x_k) + \nabla g_i(x_k)^T p \leq 0, \quad i = 1, \dots, m$
 $h_j(x_k) + \nabla h_j(x_k)^T p = 0, \quad j = 1, \dots, I$

- ▶ Direction p, with multipliers μ_{k+1} , λ_{k+1} , define Newton step for solving (nonlinear) KKT conditions (see text for more).
- ▶ Lagrangian Hessian $\nabla^2_{xx} L(x_k, \mu_k, \lambda_k)$ may not be positive definite.

- ▶ Given $x_k \in \mathbb{R}^n$ and a vector $(\mu_k, \lambda_k) \in \mathbb{R}_+^m \times \mathbb{R}^\ell$, choose a positive definite matrix $B_k \in \mathbb{R}^{n \times n}$. $B_k \approx \nabla_{xx}^2 L(x_k, \mu_k, \lambda_k)$
- Solve

minimize
$$\frac{1}{2}p^T B_k p + \nabla f(x_k)^T p,$$
 (6a)

subject to
$$g_i(x_k) + \nabla g_i(x_k)^T p \le 0, i = 1, ..., m,$$
 (6b)

$$h_j(x_k) + \nabla h_j(x_k)^T p = 0, \ j = 1, \dots, \ell$$
 (6c)

- ► Working version of SQP search direction subproblem
- Quadratic convergence near KKT points. What about global convergence? Perform line search with some merit function.

- 1. Initialize iterate with (x_0, μ_0, λ_0) , B_0 and merit function M.
- 2. At iteration k with (x_k, μ_k, λ_k) and B_k , solve QP subproblem for search direction p_k :

minimize
$$\frac{1}{2}p^TB_kp + \nabla f(x_k)^Tp$$

subject to $g_i(x_k) + \nabla g_i(x_k)^Tp \leq 0, \quad i = 1, ..., m$
 $h_j(x_k) + \nabla h_j(x_k)^Tp = 0, \quad j = 1, ..., l$

Let μ_k^* and λ_k^* be optimal multipliers of QP subproblem. Define $\Delta x = p_k$, $\Delta \mu = \mu_k^* - \mu_k$, $\Delta \lambda = \lambda_k^* - \lambda_k$.

- 3. Perform line search to find $\alpha_k > 0$ s.t. $M(x_k + \alpha_k \Delta x) < M(x_k)$.
- 4. Update iterates: $x_{k+1} = x_k + \alpha_k \Delta x$, $\mu_{k+1} = \mu_k + \alpha_k \Delta \mu$, $\lambda_{k+1} = \lambda_k + \alpha_k \Delta \lambda$.
- 5. Stop if converge, otherwise update B_k to B_{k+1} ; go to step 2.

TMA947 - Lecture 14

Merit function as non-differentiable exact penalty function P_e :

$$\check{\chi}_{\mathcal{S}}(x) := \sum_{i=1}^m \mathsf{maximum}\left\{0, g_i(x)\right\} + \sum_{j=1}^\ell |h_j(x)|,$$
 $P_e(x) := f(x) + \nu \check{\chi}_{\mathcal{S}}(x)$

- ► For large enough ν , solution to QP subproblem (6) defines a descent direction for P_e at (x_k, μ_k, λ_k) .
- ▶ For large enough ν , reduction in $P_{\rm e}$ implies progress towards KKT point in the original constrained optimization problem.
 - Compare convergence results for exterior penalty methods.
 - ▶ See text for more (Proposition 13.10).

► Combining the descent direction property and exact penalty function property, one can prove convergence of the merit SQP method.

- ▶ Convergence of the SQP method towards KKT points can be established under additional conditions on the choices of matrices $\{B_k\}$
 - 1. Matrices B_k bounded

- Selecting the value of ν is difficult
- No guarantees that the subproblems (6) are feasible; we assumed above that the problem is well-defined
- $ightharpoonup P_e$ is only continuous; some step length rules infeasible
- ► Fast convergence not guaranteed (the *Maratos effect*)
- ▶ Penalty methods in general suffer from ill-conditioning. For some problems the ill-conditioning is avoided
- ► Exact penalty SQP methods suffer less from ill-conditioning, and the number of QP:s needed can be small. They can, however, cost a lot computationally
- fmincon in MATLAB is an SQP-based solver