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Consider the unconstrained optimization problem to

minimize
x∈Rn

f(x), (1)

where f ∈ C0 on R
n (f is continuous). Mostly, we assume that f ∈ C1 holds (f is continuously

differentiable), sometimes even C2. The choice of the algorithm depends on the size of the prob-
lem, availability of ∇f(x) and ∇2f(x), convexity of f and if the goal is to find a local or the global
minimum.

Most algorithms for unconstrained optimization problems are what we call line search type algo-
rithms.

Definition. Line search type algorithm

Step 0: Starting point x0 ∈ R
n. Let k := 0.

Step 1: Find search direction p
k
∈ R

n

Step 2: Perform line search, i.e., find αk > 0 such that f(xk + αkpk
) < f(xk)

Step 3: Let xk+1 := xk + αkpk
.

Step 4: If termination criteria is fulfilled then stop! Otherwise, let k := k + 1 and go to Step 1.
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Most algorithms we consider are inherently local, meaning that the search direction pk is only
based on the information at the current point xk, that is, f(xk), ∇f(xk), and ∇2f(xk).

Think of a near-sighted mountain climber. The climber is in a deep fog and can only check his or
her barometer for the height and feel the steepness of the slope under her feet.
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Step 1: Search directions

Vector pk is a descent direction at xk if f(xk + αpk) < f(xk) for all α ∈ (0, δ] for some δ > 0.

Let f ∈ C1 in some neighborhood of xk ∈ R
n, if ∇f(xk) 6= 0, then p

k
= −∇f(xk) is a descent

direction for f at xk (follows from optimality conditions). This search step is called steepest descent
direction because it solves the problem to

minimize
p∈Rn:‖p‖=1

∇f(xk)
Tp.

Let Q ∈ R
n×n be an arbitrary symmetric, positive definite matrix. Then pk = −Q∇f(xk) is a

descent direction for f at xk, because

∇f(xk)
Tpk = −∇f(xk)

TQ∇f(xk) < 0,

due to the positive definiteness of Q.

Examples:

– Steepest descent: Q = I,

– Newton’s method: Q = [∇2f(xk)]
−1.

We will now derive Newton’s method. First assume that ∇2f(x) is positive definite. A second-order
Taylor approximation is then:

f(xk + p)− f(xk) ≈ ∇f(xk)
Tp+

1

2
pT∇2f(xk)p =: ϕxk

(p)

We now try to minimize this approximation by setting the gradient of ϕxk
(p) to zero:

∇pϕxk
(p) = ∇f(xk) +∇2f(xk)p = 0 ⇔ ∇2f(xk)p = −∇f(xk)

Now by choosing the vector fulfilling this we obtain pk = −[∇2f(xk)]
−1∇f(xk) as the search

direction. When n = 1, we get that pk = −f ′(xk)/f
′′(xk).

When the Hessian ∇2f(xk) is positive definite this search direction is a descent direction. But
when ∇2f(xk) is negative definite (may be also non invertible), the search direction is an ascent
direction, meaning that Newton’s method does differentiate between minimization and maxi-
mization problem. The solution to this problem is to modify ∇2f(xk) by adding a diagonal ma-
trix γI such that (∇2f(xk)+γI) is positive definite (this can always be done, why?). This method
is called the Levenberg-Marquardt modification. We thus take as search direction

pk = −
[

∇2f(xk) + γI
]−1

∇f(xk).

Note that

– Steepest descent: γ = ∞,

– Newton’s method: γ = 0.
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What happens when we can not compute ∇2f(xk)? Try to approximate the Hessian in some way
choosing approximate matrix Bk. From Taylor expansion for ∇f(xk) we have that

∇2f(xk)(xk − xk−1) ≈ ∇f(xk)−∇f(xk−1)

so the approximate matrix Bk has to fulfill

Bk(xk − xk−1) = ∇f(xk)−∇f(xk−1).

Many different choices of Bk exist, and they lead to what is called quasi-Newton methods.

To summarize:

Steepest descent: pk = −∇f(xk)

Netwon’s method: ∇2f(xk)pk = −∇f(xk)

Levenberg-Marquardt: (∇2f(xk) + γI)pk = −∇f(xk)

Quasi-Newton: Bkpk
= −∇f(xk).

Step 2: Line search

In each iteration one would like to solve

minimize
α≥0

ϕ(α) := f(xk + αpk).

The optimality conditions for the problem are

ϕ′(α∗) ≥ 0,

α∗ϕ′(α∗) = 0,

α∗ ≥ 0.

These conditions state that if α∗ > 0, then ϕ′(α∗) = 0, which implies that

∇f(xk + α∗pk)
Tpk = 0,

meaning that the search direction p
k

is orthogonal to the gradient of f at xk + α∗p
k
.
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However, solving the line search problem to optimality is unnecessary. The optimal solution to
the original problem lies elsewhere anyway. Examples of methods to choose step lengths αk

– Interpolation: Use f(xk), ∇f(xk), and ∇f(xk)
Tp

k
to approximate ϕ = f(xk +αp

k
) quadrat-

ically. Then minimize this approximation of ϕ analytically.

– Newton’s method: Repeat improvements from a quadratic approximation: α = α−ϕ′(α)/ϕ′′(α)

– Golden section: Derivative-free method which shrinks an interval wherein a solution to
ϕ′(α) = 0 lies.

We will often use what is denoted as the Armijo rule. The idea is to choose a step length α which
provides sufficient decrease in f . We have that

f(xk + αpk) ≈ f(xk) + α∇f(xk)
Tpk,

for very small values of α > 0, meaning that we predict that the objective function will decrease
with α∇f(xk)

Tpk if we move a step length α in the direction of pk. Now this might be too
optimistic, and we will therefore accept the step length if the actual decrease is at least a fraction
µ (µ is small, typically µ ∈ [0.001, 0.01]) of the predicted decrease, i.e., we will accept α if

f(xk + αpk)− f(xk) ≤ µα∇f(xk)
Tpk,

or equivalently, if
ϕ(α) − ϕ(0) ≤ µαϕ′(0).

We usually start with α = 1. If this is not fulfilled, then choose α := α/2.

αR

ϕ(0) + αϕ′(0) ϕ(0) + µαϕ′(0)

ϕ(α)

Figure 1: The interval (R) accepted by the Armijo step length rule
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Convergence

In order to state a convergence result for the algorithm, we make an additional assumption for
the search directions. We need the directions pk to fulfill

−
∇f(xk)

Tpk

‖∇f(xk)‖ · ‖pk‖
≥ s1, ‖pk‖ ≥ s2||∇f(xk||, and ‖pk‖ ≤ M (2)

for some s1, s2 > 0, where the first inequality makes the angle between pk and ∇f(xk) stay
between 0 and π/2, but not too close to π/2. The second inequality makes sure that the only
case when p

k
can be zero is when the gradient is zero. These two conditions guarantee a certain

descent quality.

Theorem (convergence of unconstrained algorithm). Suppose f ∈ C1 and for the starting point x0

the level set {x ∈ R
n | f(x) ≤ f(x0)} is bounded. Consider the iterative algorithm described above.

Suppose that for all k, p
k

fulfills (2) and αk is chosen according to the Armijo rule. Then

a) the sequence {xk} is bounded,

b) the sequence {f(xk)} is descending and lower bounded, and

c) every limit point of {xk} is a stationary point.

Proof. See Theorem 11.4 in the book.

If we add the assumption that f is a convex function, then we can show that

optimum exists ⇐⇒ {xk} converges to an optimal solution.

Step 4: Termination criteria

We can not terminate the algorithm when ∇f(xk) = 0, since this rarely happens. We need to have
some tolerance level. Three examples are

a) ‖∇f(xk)‖ ≤ ε1(1 + |f(xk)|), where ε1 > 0 is small.

b) f(xk−1)− f(xk) ≤ ε2(1 + |f(xk)|), where ε2 > 0 is small.

c) ‖xk − xk−1‖ ≤ ε3(1 + ‖xk‖), where ε3 > 0 is small.

Can also use the max-norm ‖ · ‖∞ instead.
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A note on trust region methods

Trust region methods use a quadratic approximation of the function around the current iterate
xk, avoid a line search but instead bound the length of the search direction. Let

ϕxk
(p) := f(xk) +∇f(xk)

Tp+
1

2
pT∇2f(xk)p.

Since this is a local approximation, we restrict our approximation to a trust region in the neighbor-
hood of xk, i.e., we trust the model in the region where ‖p‖ ≤ ∆k. We then solve the problem
to

minimize ϕxk
(p),

subject to ‖p‖ ≤ ∆k.

and let the solution be pk. Then we update our iterate as xk+1 = xk+pk. We also update the trust
region parameter ∆k depending on the progress so far (actual reduction/predicted reduction).
The method is robust and possess strong convergence. More detailed information about trust
region methods can be found in the book on pages 301–302.

A note on black-box functions

In some cases the value of the objective function f(x) is given through some unknown simulation
procedure. This implies that we do not have a clear representation of the gradient of the objective
function. In some cases, we can perform numerical differentiation and approximate the partial
derivatives as, e.g.,

∂f(x)

∂xi

≈
f(x+ αei)− f(x)

α
,

where ei = (0, . . . , 0, 1, 0, . . . , 0)T is the unit vector in R
n.

If the simulation is not accurate, we get a bas derivative information. We can use derivative-free

methods instead. These try to build a model f̂ of the objective function f from evaluating the
objective function at some specific test points and optimize the model f̂ instead of the function f .
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