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Consider the unconstrained optimization problem to

minimize f(x), 1)

where f € C° on R" (f is continuous). Mostly, we assume that f € C' holds (f is continuously
differentiable), sometimes even C?. The choice of the algorithm depends on the size of the prob-
lem, availability of V f(z) and V2 f(x), convexity of f and if the goal is to find a local or the global
minimum.

Most algorithms for unconstrained optimization problems are what we call line search type algo-
rithms.

Definition. Line search type algorithm

Step 0: Starting point xo € R". Let k := 0.

Step 1: Find search direction p;, € R"

Step 2: Perform line search, i.e., find oy, > 0 such that f(x + cupy,) < f(xr)
Step 3: Let xp41 1= T + arpy,.

Step 4: If termination criteria is fulfilled then stop! Otherwise, let k := k + 1 and go to Step 1.

f(zy + apy)

g @

Most algorithms we consider are inherently local, meaning that the search direction p,, is only
based on the information at the current point y, that is, f(zx), Vf(zx), and V2 f(zy).

Think of a near-sighted mountain climber. The climber is in a deep fog and can only check his or
her barometer for the height and feel the steepness of the slope under her feet.
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Step 1: Search directions

Vector p,, is a descent direction at xy, if f(zx, + ap;,) < f(xk) for all @ € (0, ] for some § > 0.

Let f € C! in some neighborhood of x;, € R", if Vf(xx) # 0, then p,, = —V f(xy) is a descent
direction for f at x;, (follows from optimality conditions). This search step is called steepest descent
direction because it solves the problem to

minimize Vf(x;)T

p.
peR™:||p[|=1

Let Q@ € R™ "™ be an arbitrary symmetric, positive definite matrix. Then p;, = —QV f(zy) is a
descent direction for f at x;, because

Vi(@e) P = =V f(zk) ' QV f(mr) <0,
due to the positive definiteness of Q.

Examples:

— Steepest descent: Q = I,
— Newton’s method: Q = [V? ()] .

We will now derive Newton’s method. First assume that V2 f (x) is positive definite. A second-order
Taylor approximation is then:

1
f(@x+p) = f(@e) = V(@) 'p+ 5p" V2 f(@6)P = ¢a, (P)
We now try to minimize this approximation by setting the gradient of ¢, (p) to zero:

VpPa,(P) = V(i) + Vif(i)p=0 &  V’f(zp)p=-Vf(zk)

Now by choosing the vector fulfilling this we obtain p, = —[V?f(zx)] "'V f(x}) as the search
direction. When n = 1, we get that pi, = — f'(x)/ " (zx).

When the Hessian V2 f(zy) is positive definite this search direction is a descent direction. But
when V2 f () is negative definite (may be also non invertible), the search direction is an ascent
direction, meaning that Newton’s method does differentiate between minimization and maxi-
mization problem. The solution to this problem is to modify V?f(x) by adding a diagonal ma-
trix vI such that (V2 f(z)) +~I) is positive definite (this can always be done, why?). This method
is called the Levenberg-Marquardt modification. We thus take as search direction

pp = — [V2f (@) + 1] Vi(xy).

Note that

— Steepest descent: v = oo,

— Newton’s method: v = 0.
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What happens when we can not compute V2 f(z)? Try to approximate the Hessian in some way
choosing approximate matrix By. From Taylor expansion for V f(x) we have that

V2 f @) (@ — Te1) & V() = Vf(zr-1)
so the approximate matrix By, has to fulfill
Bi(zk — zk-1) = Vf(zr) — Vf(@h-1)
Many different choices of By, exist, and they lead to what is called quasi-Newton methods.

To summarize:

Steepest descent: —Vf(xk)
Netwon’s method: v? f(ick)pk = —Vf(x)
Levenberg-Marquardt:  (V2f(zy,) +~I)p, = —Vf(x)
Quasi-Newton: Byp, = -V f(xk).

Step 2: Line search

In each iteration one would like to solve
minimize p(a) := f(x + apy,).
a>0

The optimality conditions for the problem are
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These conditions state that if a* > 0, then ¢’ (a*) = 0, which implies that
Vi(zy +a’p,)'pe =0,

meaning that the search direction p,, is orthogonal to the gradient of f at x + a*p,,.
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However, solving the line search problem to optimality is unnecessary. The optimal solution to
the original problem lies elsewhere anyway. Examples of methods to choose step lengths oy,

— Interpolation: Use f(zx), V f(zr), and V f(zi) T p, to approximate ¢ = f(xj + ap,,) quadrat-
ically. Then minimize this approximation of ¢ analytically.

— Newton’s method: Repeat improvements from a quadratic approximation: o = a—¢'(a)/¢" ()

— Golden section: Derivative-free method which shrinks an interval wherein a solution to

¢'(a) = 0 lies.

We will often use what is denoted as the Armijo rule. The idea is to choose a step length o which
provides sufficient decrease in f. We have that

f(xr + apy) =~ f(xr) + aV f(zr) py,

for very small values of & > 0, meaning that we predict that the objective function will decrease
with aV f(zx)Tp, if we move a step length « in the direction of p,. Now this might be too
optimistic, and we will therefore accept the step length if the actual decrease is at least a fraction
w (p is small, typically g € [0.001, 0.01]) of the predicted decrease, i.e., we will accept « if

f(@r+apy) — f(xr) < paV f(xp) py,

or equivalently, if
(@) = ¢(0) < pag'(0),
We usually start with « = 1. If this is not fulfilled, then choose o := /2.

©(0) + ay'(0) ©(0) + pay’(0)

Figure 1: The interval (R) accepted by the Armijo step length rule
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Convergence

In order to state a convergence result for the algorithm, we make an additional assumption for
the search directions. We need the directions p,, to fulfill

Vf(:ck)Tpk
—e— - > 5y, Pl > s2||V f(zk]], and pll < M )
Vil o =5 1Pl = sall VI @] Iyl

for some s1,s2 > 0, where the first inequality makes the angle between p, and V f(x) stay
between 0 and 7/2, but not too close to 7/2. The second inequality makes sure that the only
case when p; can be zero is when the gradient is zero. These two conditions guarantee a certain
descent quality.

Theorem (convergence of unconstrained algorithm). Suppose f € C* and for the starting point x
the level set {x € R™ | f(x) < f(xo)} is bounded. Consider the iterative algorithm described above.
Suppose that for all k, p,, fulfills (2) and o, is chosen according to the Armijo rule. Then

a) the sequence {xy,} is bounded,
b) the sequence { f (x1)} is descending and lower bounded, and

c) every limit point of {xy} is a stationary point.
Proof. See Theorem 11.4 in the book. O

If we add the assumption that f is a convex function, then we can show that

optimum exists = {1} converges to an optimal solution.

Step 4: Termination criteria

We can not terminate the algorithm when V f(x;) = 0, since this rarely happens. We need to have
some tolerance level. Three examples are

a) |[Vf(zr)|| <e1(1+|f(xx)|), where e; > 0 is small.
b) f(xk—1) — f(zr) < e2(l +|f(xk)|), where e > 0 is small.

Q) ||xr — xp—1| <e3(l+ ||zkl]), where e3 > 0 is small.

Can also use the max-norm || - || instead.
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A note on trust region methods

Trust region methods use a quadratic approximation of the function around the current iterate
x), avoid a line search but instead bound the length of the search direction. Let

P (P) 1= Flwn) + Vi (@x)"p + 59"V f(ai)p.

Since this is a local approximation, we restrict our approximation to a trust region in the neighbor-
hood of x, i.e., we trust the model in the region where ||p|| < Aj. We then solve the problem
to

minimize g, (p),
subject to ||p|| < Ag.

and let the solution be p,,. Then we update our iterate as ;1 = x;+ p,. We also update the trust
region parameter A; depending on the progress so far (actual reduction/predicted reduction).
The method is robust and possess strong convergence. More detailed information about trust
region methods can be found in the book on pages 301-302.

A note on black-box functions

In some cases the value of the objective function f(x) is given through some unknown simulation
procedure. This implies that we do not have a clear representation of the gradient of the objective
function. In some cases, we can perform numerical differentiation and approximate the partial
derivatives as, e.g.,
of () _ flx+ae;) - f(z)
ox; o ’

where e; = (0,...,0,1,0,...,0)7T is the unit vector in R™.

If the simulation is not accurate, we get a bas derivative information. We can use derivative-free
methods instead. These try to build a model f of the objective function f from evaluating the
objective function at some specific test points and optimize the model f instead of the function f.



