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[Note: these notes are prelimiary and subject to change.]
We are now going to turn our attention to constrained optimization prob-

lems, that is, problems of the form

min f(x), (1a)

subject to x ∈ S, (1b)

where f : Rn → R and S ⊂ R
n. In the case where S is convex and f ∈ C1, we

have already worked out an optimality condition for this type of problem, i.e.,
we have a theorem of the form

x∗is a local minimum =⇒ x∗is a stationary point

We formulated stationarity in several different ways, one of which was

−∇f(x∗) ∈ NS(x
∗),

where NS(x
∗) is the normal cone of S at x∗, i.e.,

NS(x
∗) := {p ∈ R

n | pT(y − x∗) ≤ 0, ∀y ∈ S}.

Let us pause for a minute to reflect on this; according to what we know about un-
constrained optimization the condition that −∇f(x∗) ∈ NS(x

∗) simply means
that for all y ∈ S, we have (∇f(x∗))T(y−x∗) ≥ 0, which tells us that the vector
pointing from our locally optimal point x∗ to the feasible point y ∈ S does not
look like a descent direction for f . The optimality condition −∇f(x∗) thus says
nothing else than that it should not be possible to move from x∗ in a direction
allowed by S, such that f decreases.

This is also the approach we will take to develop optimality conditions for
more general non-linearly constrained problems. We first formalize the notion
of what a ”direction allowed by S” is going, and then require that these allowed
directions do not contain any descent directions for f . It will however turn
out that formulating a good notion of ”allowed direction” is quite possibly the
technically most challenging part of this course!
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1 Geometric optimality conditions

First we introduce the most natural way of measuring allowed direction.

Definition 1 (cone of feasible direction, the radial cone). The cone of feasible
directions RS(x) for S at x ∈ S is defined as

{p ∈ R
n | ∃δ > 0,x+ αp ∈ S, ∀0 ≤ α ≤ δ}. (2)

An element p ∈ Rs(x) is thus simply a vector such that the feasible set S
contains a non-trivial part of the half-line x+αp, α ≥ 0. Although natural this
cone is too small to use for optimality conditions for non-linearly constrained
programs1.

Example 1. Let S := {x2 = x2
1}. Then RS(x) = ∅ for all x ∈ S, simply

because the feasible set is a curved line in R
n.

The perhaps most widely used object in the literature to develop optimality
conditions is therefore a significantly more complicated object.

Definition 2 (The tangent cone TS(x)). The tangent cone for S at x ∈ S is
defined as

TS(x) :=
{

p |∃{xk}
∞
k=1 ⊂ S, {λk}

∞
k=1, such that

lim
k→∞

xk = x,

lim
k→∞

λk(xk − x) = p
}

.

(3)

It may not be obvious to the reader in what way this horrenduous looking
definition of a cone TS(x) actually measures some kind of allowed direction
of S. However, in words, the above definition tells us that to check whether
a vector p ∈ TS(x) we should check whether there is a feasible sequence of
points xk ∈ S that approaches x, such that p is the asymptotic direction from
which xk approaches x. Seen this way, we can convince ourselves that TS(x)
consists precisely of all the possible directions in which x can be asymptotically
approached through S. In other words, TS(x) consists of all vectors pointing
’along’ S from x ∈ S, that is all vectors that are tangent to S at x.

Example 2. Let again S := {x2 = x2
1}. Then TS(0) = {p | p2 = 0}. Note that

in this example, we can identify the tangent cone with the ordinary tangent line
that we learn how to compute in multivariable courses.

Example 3. Suppose that we have a smooth curve in S starting at x ∈ S, that
is, we have a C1 map γ : [0, T ] → S for some T > 0. Then γ′(0) ∈ TS(x). To
see this, note that the very definition of (one-sided) derivative is just that

γ′(0) = lim
t→0

γ(t)− γ(0)

t
, (4)

1it will, however, work perfectly for linear programs!
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so that if we fix any sequence tk → 0, and let xk := γ(tk), λk = 1/tk, we have
defined the sequences required in the definition of TS(x).

It remains to formulate a notion of descent directions to f , fortunately we
can use the same characerization as in the unconstrained case

Definition 3 (descent cone).
◦

F (x) := {p ∈ R
n | ∇f(x)Tp < 0}.

The above examples should then make the following theorem intuitively
obvious.

Theorem 1 (geometric optimality conditions). Consider the problem (1), where
f ∈ C1. Then

x∗ is a local minimum =⇒
◦

F (x∗) ∩ TS(x
∗) = ∅. (5)

Proof. See theorem 5.10 in the book.

Example 4. If we again return to our example with smooth curves, we showed
that for any smooth curve γ thorugh S starting at x∗, we had γ′(0) ∈ TS(x

∗).
Try to convince yourself that the geometric optimality condition reduces to the

statement that
d

dt
|t=0f(γ(t)) ≥ 0 when applied to this tangent vector.

2 Going from geometric to useful

Now we have develeped a quite elegant optimality condition, however there is
a huge catch. There is no practical way to compute TS(x) directly from its
definition! There are two ways out of this dilemma. The first (which lead to
the Fritz John conditions) is to simply replace the cone TS(x) by smaller cones.

Lemma 1. If the family of cones C(x) ⊆ TS(x) for all x ∈ S, then
◦

F (x∗) ∩
C(x∗) = ∅ is a neccessary optimality condition.

Proof. Using the geometric optimality condition we have for any locally optimal
x∗ ∈ S,

◦

F (x∗) ∩ C(x∗) ⊆
◦

F (x∗) ∩ TS(x
∗) = ∅.

The obvious danger of introducing smaller cones is that the optimality con-
ditions we get are weaker than the geometric optimality conditions.

Example 5. Let C(x) = RS(x) and consider again the example S := {x2 =

x2
1}. Since RS(x) = ∅, the optimality condition

◦

F (x)∩RS(x) = ∅ holds for any
feasible x ∈ S, which is obviously a totally useless optimality condition
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The second way out is to introduce regularity conditions, or constraint qual-
ifications, which will allow us to actually compute the tangent cone TS(x) by
other means. This approach leads to the Karush-Kuhn-Tucker (KKT) con-
ditions. The obvious drawback of this approach is that, although the KKT
conditions are equally strong as the geometric conditions, they are less general,
i.e., they do not apply for irregular problems.

From now on we will consider a problem of the form

min f(x), (6a)

subject to gi(x) ≤ 0, i = 1, . . . ,m (6b)

where now f : Rn → R, and gi : R
n → R, i = 1, . . . ,m are all C1, i.e., we take

S to be of the form S := {x ∈ R
n | gi(x) ≤ 0, i = 1, . . . ,m}. This allows us to

define (even more) cones that are related to TS(x). From now on we will also
use the notation I(x) to denote the active set of constraints at x, that is,

I(x) := {i ∈ {1, . . . ,m} | gi(x) = 0}. (7)

Definition 4 (gradient cones). We define the inner gradient cone
◦

G(x) as

◦

G(x) := {p ∈ R
n | ∇gi(x)

Tp < 0, ∀i ∈ I(x)}. (8)

Similarly we define the gradient cone G(x) as

G(x) := {p ∈ R
n | ∇gi(x)

Tp ≤ 0, ∀i ∈ I(x)}. (9)

Note that in the inner gradient cone
◦

G(x) consists of all vectors p that
can be guaranteed to be descent directions of all defining functions for the
active constraints, while the gradient cone G(x) consists of all directions that
can be guaranteed not to be ascent directions for the active constraints. Since
ascent/descent of the active constraints captures the intuition behing what a
’feasible movement’ from x through S is, the following theorem should not
come as a surprise.

Theorem 2 (Relations between cones). For the problem (6) it holds that

cl
◦

G(x) ⊆ cl RS(x) ⊆ TS(x) ⊆ G(x) (10)

Proof. See the book for a complete proof. The moral of the story is that
◦

G(x)
consists of all directions p that are descent directions for all active constraints.
Thus the active constraints must decrease along the direction p, thus defining

a feasible direction, i.e.,
◦

G(x) ⊆ RS(x).
The inclusion RS(x) ⊆ TS(x) follows the above example of smooth curves:

a straight line in S is most definitely a smooth curve.
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The final inclusion remains. Take an arbitrary p ∈ TS(x), and let {xk},
{λk} be the sequences as in the definition of TS(x). Then for any i ∈ I(x)

∇gi(x)
Tp = lim

gi(xk)− gi(x)

‖xk − x‖
≤ 0 (11)

Since xk ∈ S for all k, so that gi(xk) ≤ 0, and gi(x) = 0 since i ∈ I(x).
Finally taking closures the theorem follows as TS(x) is a closed set (the proof

of which can be found in the book).

Please note that the above inclusions in general are strict.

3 The Fritz John conditions

The Fritz John conditions are what we when we replace the tangent TS in the

geometric optimality condition by
◦

G(x). According to the above discussion the
Fritz John conditions are weaker than the geometric optimality conditions.

x∗is locally optimal in (6) =⇒
◦

G(x) ∩
◦

F (x) = ∅. (12)

Again, this condition looks fairly abstract, however it is actually quite easy to
turn the above equation into something more practically viable. The moral of
the story is that the above equation is for a fix x just the statement that a linear
system of inequalities does not have solution. Fortunately we have a tool at our
disposal for turning an inconsistent set of linear inequalities into a consistent
set of inequalities, namely Farkas’ Lemma.

Theorem 3 (The Fritz John conditions). If x∗ is locally optimal in (6), then
the system

µ0∇f(x∗) +
m
∑

i=1

µi∇gi(x
∗) = 0, (13)

µigi(x
∗) = 0, i = 1, . . . ,m, (14)

(µ0, µi) ≥ 0, (15)

(µ0, µi) 6= 0.. (16)

has a solution µ.

Proof. For full details, see the book. The core of the argument is to use Farkas’
Lemma to convert an inconsistent system to a consistent one. That is, we

formulate the local optimality condition
◦

G(x) ∩
◦

F (x) = ∅ as the unsolvability
of the system of linear inequalities
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∇gi(x
∗)Tp+ α ≤ 0, i ∈ I(x∗) (17)

∇f(x∗)Tp+ α ≤ 0, (18)

α > 0. (19)

This looks just like a system in Farkas Lemma, so the unsolvability of the above
is equivalent the solvability of

µ0∇f(x∗) +
∑

i∈I(x∗)

µi∇gi(x
∗) = 0, (20)

µ0 +
∑

i∈I(x∗)

µi = 1. (21)

To turn this system into the one claimed in the theorem we add the multi-
pliers µi = 0 for i /∈ I(x∗), this yields the complementarity conditions (14), and
by a simple scaling argument the second row above is equivalent to (16).

It might be somewhat illuminating to try and use the above reasoning to
get optimality conditions for unconstrained problems. The logic is exactly the
same: we have a geometric condition (namely ’no descent directions’) which
we formulate as the unsolvability of the ’system’ ∇f(x∗)Tp < 0. This can be
turned into a solvability of another system, namely ∇f(x∗) = 0.

The main drawback of the Fritz-John conditions is that they are too weak,
consider the example from before where RS(x) = ∅. We can also see this in the
Fritz-John system; there is a multiplier in front of the objective function term. If
there is a solution to the Fritz-John system where the multiplier µ0 = 0, in effect
the objective function does not play any role whatsoever in the system, which
is indeed a very weak optimality condition. This insight gives us at least one
way to think of regularity conditions (constraint qualifications); it is conditions
that guarantee that any solution of the Fritz-John system must satisfy µ0 6= 0.

4 KKT conditions

We begin by developing the KKT conditions from a standpoint where we simply
assume some regularity of the problem at hand; that is we simply assume that
the problem we consider is nicely behaved, and postpone the issue of whether
any given problem is indeed well behaved until later.

Definition 5 (Abadies constraint qualification). We say that the problem (6)
satifies Abadies constraint qualification if TS(x) = G(x) for all x ∈ S.

Remark: Abadies constraint qualification should be viewed as an abstract
condition, it really is just the mathematical way of expressing ”(6) is well-
behaved”

This allows us to the following (important!) theorem
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Theorem 4. Assume that the problem (6) satisfies Abadies CQ, then at any
locally optimal point x∗ the system

∇f(x∗) +

m
∑

i=1

µi∇g(x∗) = 0, (22)

µigi(x
∗) = 0, (23)

µi ≥ 0, i = 1, . . . ,m. (24)

has a solution µ.

Proof. The geometric optimality and the CQ yields that ∅ = TS(x
∗)∩

◦

F (x∗) =

G(x∗) ∩
◦

F (x∗) = ∅. This can be formulated as the unsolvability of the system

∇f(x∗)Tp < 0, (25)

∇gi(x
∗)Tp ≤ 0, i ∈ I(x∗). (26)

This can, just as in the Fritz-John conditions, be turned into a solvable system
by Farkas Lemma (here we think of the matrix A as consisting the gi-gradients,
and b as −∇f(x∗)),

∑

i∈I

∇gi(x
∗) = −∇f(x∗), (27)

µi ≥ 0, i ∈ I(x∗). (28)

This is equivalent to the claimed system by the same tricks we used in the
Fritz-John conditions.

Note now that the KKT conditions are precisely the Fritz-John conditions,
with the added requirement that µ0 = 1. Also a note on terminology, we call the
vector µ solving the KKT system for some fixed x ∈ S a Lagrange multiplier.
Beware that this terminology will unfortunately conflict with the terminology
of Lagrangian dualoty later on!

5 Constraint qualifications

Our final task in showing that the KKT conditions is now to find practical,
usable conditions under which we can guarantee that Abadies CQ holds. We
start with one of the simplest and most useful ones.

Definition 6 (LICQ). We say that the linear independence constraint qualifi-
cation (LICQ) holds at x ∈ S if the set {∇gi(x), i ∈ I} is linearly independent.

Proposition 1. The LICQ implies the validity of the KKT conditions
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Proof. Note: the book does a different (in my view harder) proof. What we want
to show is that KKT conditions holds at any locally optimal point, assuming
the LICQ. But the Fritz-John conditions are always valid, so there is a solution
to the Fritz-John system at x∗. But this solution must satisfy µ0 6= 0, since
otherwise we have a nonzero solution to

∑

i∈I µi∇gi(x
∗) = 0, which contradicts

the linear independence assumption.

The other constraint qualifications we will consider in this course comes from
comparing the cones of (10). As a first example we consider the Mangasarian-
Fromowitz CQ.

Definition 7 (MFCQ). The Mangarasarian-Fromowitz constraint qualification

holds at x ∈ S if
◦

G(x) 6= ∅.

Proposition 2. The MFCQ implies the Abadie CQ.

Proof. The main idea is to show that cl
◦

G(x) = G(x), since if this holds then by
(10) TS(x) = G(x) holds. To show this claim, we pick an arbitrary p1 ∈ G(x),

and an arbitrary p0 ∈
◦

G(x) (which exists since
◦

G(x) 6= ∅). We then let, for
t ∈ (0, 1), pt := (1− t)p0 + tp1. Then, for any i ∈ I,

∇gi(x)
Tpt = (1− t)∇gi(x)

Tp0

<0, p0∈
◦

G(x)

+ t∇gi(x)
Tp1

≤0, p1∈G(x)

< 0. (29)

This shows that pt ∈
◦

G(x) for all t ∈ [0, 1). Since clearly pt → p1 as t → ∞,

we have shown that p1 ∈ cl
◦

G(x).

The MFCQ can be used to get other constraint qualifications as well.

Definition 8. Slaters CQ holds for (6) if gi are all convex functions, and there
is an interior point, i.e., a point x0 such that gi(x0) < 0 for all x ∈ S.

Proposition 3. Slaters CQ implies Abadies CQ.

Proof. For any x ∈ S, let i ∈ I(x). Then we have by convexity

0 > gi(x0) ≥ gi(x)
=0

+∇gi(x)
T(x0 − x). (30)

Rearranging yields ∇gi(x)
T(x0 − x) < 0 for all i ∈ I(x). Hence x0 − x ∈

◦

G(x),
so MFCQ holds at x, and thus also Abadie.

Definition 9 (Affine constraints CQ). The affine constraints holds for (6) if
all the functions gi are affine, i = 1, . . . ,m.

Proposition 4. The affine constraints CQ imply Abadies CQ.

8



Proof. If the constraints are affine then for any p and any x ∈ S and any
i ∈ I(x) we have gi(x+ tp) = gi(x) + t∇gi(x)

Tp = t∇gi(p)
Tp. So if p ∈ G(x)

we have gi(x + tp) ≤ 0, and thus x + tp is feasible for all small enough t ≥ 0,
i.e., p ∈ RS(x). Hence G(x) = RS(x) from which it follows that TS(x) = G(x)
from (10).

6 Equality constraints

So far we have only talked about problems with inequality constraints, we briefly
outline how to apply the above theory for the problem to

min f(x), (31a)

subject to gi(x) ≤ 0, i = 1, . . . ,m, (31b)

hj(x) = 0, j = 1, . . . , l. (31c)

where are the functions above are C1. The main idea is simply replace the
equality constraints hj(x) = 0, with two inequality constraints, i.e., by hj(x) ≤ 0
and hj(x) ≤ 0, and apply the KKT theory to the problem

min f(x), (32a)

subject to gi(x) ≤ 0, i = 1, . . . ,m, (32b)

hj(x) ≤ 0, j = 1, . . . , l, (32c)

−hj(x) ≤ 0, j = 1, . . . , l. (32d)

The details of what happens to KKT system under this rewriting can be found
in the book, but the main observation is just that the equality constraints are
always active in any feasible solution, and they will enter the KKT system
with non-negative multipliers of opposite sign, which we can rewrite simply as
a multiplier with any sign restrictions. The KKT system becomes

f(x) +

m
∑

i=1

µi∇gi(x) +

l
∑

j=1

hj(x) = 0, (33a)

µigi(x) = 0, i = 1, . . . ,m, (33b)

µi ≥ 0, i = 1, . . . ,m (33c)

The main difficulty that we don’t really address in this course is what hap-
pens to the constraint qualifications when we add eequality constraints. In the

previous sections our main ”useful” CQ was the MFCQ, i.e., that
◦

G(x) 6= ∅.
But in the presence of equality constraints, this can never hold (think about
why?). The way out is to introduce (yet another) cone H(x) := {p ∈ R

n |
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∇hj(x)
Tp = 0, j = 1, . . . , l} and try to develop the theory of the previous sec-

tions when replacing the cones
◦

G(x) and G(x) by
◦

G(x)∩H(x) and G(x)∩H(x)
respectively. THe difficulty lies in that we cannot immediately generalize the

statement
◦

G(x) ⊂ TS(x
∗) to the statement

◦

G(x) ∩H(x) ⊂ TS(x), which make
creating useful constraint qualifications somewhat trickier. However, it turns
out that we need to require to make the above theory work is that the set of
gradients {∇hj(x)}

l
j=1 is linearly independent, but this lies beyond the scope

of this course. The constraint qualifications above then have to get modified
to include the statement ”and the set of gradients {∇hj(x)} is linearly inde-
pendent”2 . We refer the reader to the book for detailed statements of all the
CQs.

7 Sufficiency under convexity

All of what we have done above is about developing neccessary optimality con-
ditions for the problem (6). However, it is very natural to ask whether the KKT
conditions are ever sufficient for optimality, that is, can we say that if the KKT
system is solvable at x∗, that we can conclude that x∗ is optimal in (6)? In
the unconstrained case, we saw that the property that allows such statements
is convexity, and it turns out that what we need in the constrained case is also
convexity, but in terms of both the objective function and the constraints.

Theorem 5. If, in (6), the objective function f and all constraint functions
gi, i = 1, . . . ,m are convex, then the KKT conditions are a sufficient optimality
condition.

Proof. Suppose that the KKT conditions hold at x∗, with Lagrange multipliers
µ∗
i , i = 1, . . . ,m, and pick an arbitary feasible x.
We have

f(x)− f(x∗) ≥ ∇f(x∗)T(x− x∗)

= −
∑

i

µ∗
i∇gi(x)

T(x− x∗)

≥ −
∑

i

µ∗
i (gi(x)− gi(x

∗))

= −
∑

i

µ∗
i gi(x) ≥ 0

(34)

So that f(x) ≥ f(x∗) for all feasible x, i.e., x∗ is optimal.

Note that if we apply the above theorem to problems with equality con-
straints, then we must require that the equality constraints are affine.

2Except the affine constraints CQ and Abadies CQ. Think about why!
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8 Lagrangian Duality

We will consider one the most classical versions of a general method for opti-
mization, namely relaxation/duality based methods. The basic premise is to
take a ”difficult” optimization problem, and replace it with something simpler.
The ”simpler” here will be what we call the Lagrangian relaxation, but first
we are going to state an obvious theorem. We are now again working with the
abstract problem

f∗ = inf f(x) (35)

subject to x ∈ S (36)

We define a relaxation of the problem above to be a problem of the form

f∗
R = inf fR(x), (37)

subject to x ∈ SR (38)

where the function fR(x) ≤ f(x) for all x ∈ S, and where SR(x) ⊆ S. That is,
we have replaced the feasible set with larger one, and the objective with some-
thing smaller. The following should should then be obvious (but nevertheless,
a proof can be found in the book).

Theorem 6 (The relaxation theorem). a) f∗
R ≤ f∗ b) If the relaxed problem

in infeasible, then so is (36) c) If x∗
R is optimal in the relaxed problem, and

x∗
R ∈ S, then x∗

R is optimal also in (36)

8.1 Lagrangian relaxation

Now we consider a problem of the form

f∗ = inf f(x) (39a)

subject to x ∈ X, (39b)

gi(x) ≤ 0, i = 1, . . . ,m, (39c)

where f and gi are some given functions3, and X ⊆ R
n is some subset. The

basic idea of Lagrangian relaxation is to replace constraints (i.e., things that
acceptable solutions must satisfy), with a price in the objective function for
violation. That is, for any µ ∈ R

m we define the Lagrangian relaxation of (the
constraints (39c) of) the problem (39) as the problem

3note that we do not say anything about smoothness!
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q(µ) = inf f(x) +

m
∑

i=1

µigi(x) (40a)

subject to x ∈ X. (40b)

It is immediate that whenever µi ≥ 0 for i = 1, . . . ,m, the above is indeed a
relaxation of (39). The objective function appearing above is important enough
to merit its own name, and we call it the Lagrange function of (39), and denote
it by L(x,µ) := f(x) +

∑

i µigi(x).
Now we have, in a fairly simple way, defined a family of relaxations of (39),

parametrized by the ”price” vector µ. We immediately have the following, very
important, result.

Theorem 7 (Weak duality). For any µ ≥ 0, and any x feasible in (39) we
have

q(µ) ≤ f(x) (41)

Proof. This is really just a rephrasing of the statement that the Lagrangian
relaxation is, indeed, a relaxation.

The reason why this result is so important is that allows to get lower bounds
on the optimal value f∗ of (39).

Example 6. Consider the problem to

f∗ =minx2,

subject to x ≥ 1.

We can relax the constraint x ≥ 1, to get a Lagrangian dual function (note the
rewriting of x ≥ 1 as 1− x ≤ 0)

q(µ) = minx2 + µ(1− x) = min
(

x−
µ

2

)2

−
µ2

4
+ µ.

For each fixed µ ≥ 0, the above is an unconstrained minimization problem of a
convex function of x, so we can actually compute

q(µ) = µ−
µ2

4
.

Evaluating at, say, µ = 0, we get q(µ) = 0, and we can conclude that the optimal
value f∗ must satisfy f∗ ≥ 0. If we instead evaluate at µ = 1, we would be able
to conclude f∗ ≥ q(1) = 3/4.

Having the weak duality theorem at the back of our heads it makes sense to
try to find the best lower bound of f∗, which motivates the following definition.
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Definition 10 (The (Lagrange) dual problem). The Lagrange dual problem to
(39) (with respect to the relaxation of (39c)) is the problem

q∗ = sup q(µ), (42a)

subject to µ ≥ 0 (42b)

In other words, the Lagrange dual problem is just the problem of finding the
best ”price” for defining as tight a relaxation as possible. With these definitions
out of the way, we can also the an immediate consequence of the weak duality
theorem: for any pair of primal/dual problems, we have q∗ ≤ f∗.

A note on terminology: from now we will refer to (42) as the dual problem,
and to (39) as the primal problem. So, for example, the phrase ”x∗ is primally
optimal” should be taken to mean that x∗ is optimal in (39).

Example 7. Consider again the problem from the previous example. The dual
problem is to

q∗ = sup
µ≥0

µ−
µ2

4
,

and one can easily verify that the maximum is attained at µ = 2, q∗ = q(2) = 1,
which can also be noted to be the optimal value f∗ = q∗ = 1

Note that in the above example we have f∗ = q∗. If this holds, we say the
pair of primal and dual problems has no duality gap. In general, we define the
duality gap to be the difference f∗ − q∗. We also define

Definition 11. We call µ∗ a Lagrange multiplier vector if

f∗ = inf
x∈X

L(x,µ∗) (43)

Note that by the above definition, we cannot have a Lagrange multiplier
vector unless f∗ = q∗. Also note the conflict of terminology, Lagrange multiplier
is also used to talk about the vector µ appearing in the Fritz-John and KKT
conditions. ALthough the meanings are realted it should be kept in mind that
the word Lagrange multiplier mean slightly different things in the context of the
KKT conditions and in the context of Lagrange multipliers!

8.2 The dual problem

One might ask oneself why one should bother with Lagrangian duality. Really,
all we have done is to take an optimization problem (the primal) and replaced it
with another problem (the dual). This only makes sense if the dual problem is
in some sense ”easier” than the first. However we have the following (fantastic!)
theorem.
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Theorem 8. The dual function q(µ) is concave, and its effective domain Dq =
{µ | q(µ) > −∞} is convex

Proof. This will essentially be for free, since we have defined q as a infimum of
things. Spelling out the details, we have, for any pair µ,ν, and any λ ∈ (0, 1)

q((1− λ)µ+ λν) = inf
x∈X

f(x) + (1− λ)
∑

i

µigi(x) + λ
∑

i

νigi(x)

= inf
x∈X

{

(1− λ)

[

f(x) +
∑

i

µigi(x)

]

+ λ

[

f(x) +
∑

i

νigi(x)

]}

≥ (1− λ) inf
bx∈X

[

f(x) +
∑

i

µigi(x)

]

+ λ inf
x∈X

[

f(x) +
∑

i

νigi(x)

]

,

= λq(µ) + (1− λ)q(ν),

(44)

by simply noting that the infimum of a sum is greater than the sum of the infima.
Note that the above also implies that the effective domain is convex!

Lets pause for a minute and think about why the above theorem is fantastic
news! It really tells us that we can think of the dual problem as a maximization
of a concave function over a convex set! In other words, the dual problem is
always a convex problem! This means that the dual problem is amenable to
attack by convex optimization methods (which are the subject of lecture 10),
and that the nice results about convex problems we have had so far in this
course apply!

8.3 Global optimality conditions

If there is no duality gap, i.e., f∗ = q∗, then it turns out that we can actually
use the Lagrangian relaxation to get a sufficient condition for optimality.

Theorem 9. Consider the primal/dual pair of vectors (x∗, µ∗). Then x∗ is
optimal and µ∗ is a Lagrange multiplier vector if and only if

x∗ ∈ argmin L(x, µ∗), (45a)

µ
∗ ≥ 0, (45b)

x∗ ∈ X, gi(x) ≤ 0, i = 1, . . . ,m, (45c)

µ∗
i gi(x

∗) = 0, i = 1, . . . ,m. (45d)

Remark: The conditions are, in order, often called Lagrangian optimality,
dual feasibility, primal feasibility and complementary slackness. Note also the
similarity to the KKT conditions; the only difference is that we have minimiza-
tion of the Lagrangian instead of stationarity.
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Proof. Assuming that the above conditions hold we have f(x∗) = L(x∗,µ∗) ≤
L(x,µ∗) = f(x) for any feasible x, since, in order, complementary slackness al-
lows us to add the term

∑

i µigi(x
∗) = 0, x∗ minimizes L(x,µ), and

∑

i µ
∗
i gi(x) ≤

0 for any pair of primal/dual feasible vectors. This shows that f∗ = f(x∗) =
minL(x,µ∗), i.e. that x∗ is primally optimal and µ

∗ is a Lagrange multiplier
vector.

If we instead assume that x∗ is optimal and µ
∗ is a Lagrange multiplier

vector, the only non-trivial thing to verify is the complementary slackness. But
this follows since by definition f(x∗) = L(x∗,µ∗) = f(x∗) +

∑

i µ
∗
i gi(x

∗). Sub-
tracting f(x∗) from both sides yields

∑

i µ
∗
i gi(x

∗) = 0. But by primal and dual
feasibility each term in this is sum is non-positive, so all the terms must be zero
individually.

We can in fact formulate the above conditions in more compact way, as
what is called saddle-point optimality conditions, meaning that the pair (x∗,µ∗)
simultaneously maximizes L (over µ) and minimizes L (over x)

Theorem 10. x∗ is primally optimal and µ
∗ is a Lagrange multiplier if and

only if x∗ ∈ X, µ∗ ≥ 0 and

L(x∗,µ) ≤ L(x∗,µ∗) ≤ L(x,µ∗), (x,µ) ∈ X × R
m
+ (46)

Proof. The first inequality is equivalent to requiring that µ∗ maximizes L(x∗,µ)
over R

m
+ . Using optimality conditions convex set R

m
+ we have that this is

equivalent4 to ∇µL(x,µ) ∈ NR
m

+
(µ∗), where ∇µ denotes the gradient with

respect to the µ-variables of L. But since ∇µ(L(x
∗, µ∗)) = g(x∗), we get

g(x∗) ∈ NR
m

+
(µ∗), i.e., that µigi(x

∗) = 0 and gi(x
∗) ≤ 0, for all i = 1, . . . ,m.

The second inequlity is the statement x∗ ∈ argmin x∈XL(x,µ∗). Hence
the conditions of the theorem are equivalent to the conditions of the previous
theorem.

8.4 Strong Lagrangian Duality

A natural question to ask is now under what conditions one can guarantee that
q∗ = f∗, i.e., that the primal and dual optimal values coincide. Not surprisingly,
it turns out that what we need to require is convexity. However we also need to
assume some regularity, which will here be a variant of the Slater CQ. That is,
we now require that X is a convex set, gi are convex for i = 1 . . . ,m and there
is some point x ∈ X such that gi(x) ≤ 0, i = 1, . . . ,m.

Theorem 11. Assume that the problem (39) satisfies the Slater CQ, and that
f∗ ≥ −∞. Then strong Lagrangian duality holds, and there exists at least one
Lagrange multiplier vector.

Proof. Consider the set

A := {(z1, z2, . . . , zn, w) ∈ R
m+1 | ∃x ∈ X : f(x) ≤ w, gi(x) ≤ zi, i = 1, . . . ,m}

(47)

4Since L(x,µ) is convex in the µ-variable
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Since all the functions above are convex, it follows that A is convex. Further,
since −∞ < f∗ < ∞, we have that (0m, f∗) lies on the boundary of A, by
the very definition of f∗. This allows us to find a supporting hyperplane of A
passing through the point (0m, f∗), i.e., a vector (µ, β) such that

βf∗ ≤ βw +

m
∑

i=1

µizi, ∀(z1, z2, . . . , zm, w) ∈ A. (48)

Since by how A is defined, we may take w → ∞ and remain in A, which
shows that for the above to hold we must have β ≥ 0. The same argument
applied to letting zi → ∞ shows that µi ≥ 0 for i = 1, . . . ,m. Further, us-
ing the point x̄ given by the Slater CQ shows that there are points in A for
which zi < 0 for all i = 1, . . . ,m. This shows that for (48) to hold we must
have β > 0, and we may take without loss of generality β = 1. Finally, since
(g1()x, g2(x), . . . , gm(x), f(x)) ∈ A, for any x ∈ X we thus conclude that

f∗ ≤ f(x) +

m
∑

i=1

µigi(x), ∀x ∈ X (49)

Taking the infimum over x ∈ X yields f∗ ≤ q(µ) ≤ q∗. But by the weak duality
theorem we always have q∗ ≤ f∗. Thus, there is no duality gap, and the vector
µ is a Lagrange multiplier vector.

We finally note what happens if we assume that f , and gi are also C1,
X = R

m, and the problem (39) satisfies Slaters CQ and has some optimal
solution x∗. The above theorem then gives a Lagrange multiplier vector µ

∗.
Then the pair (x∗,µ∗) are a pair of a primally optimal solution and a Lagrange
multiplier vector, so they satsify the system (45). But the Lagrange function
L(x,µ) is convex in x for any µ, so the condition that x∗ ∈ argmin

x∈XL(x,µ∗)
can be replaced by the neccessary and sufficient condition that ∇∗

x
L(x,µ∗) = 0.

But ∇xL(x,µ
∗) = ∇f(x) +

∑m

i=1 µ
∗
i∇gi(x

∗). Thus in this case the golbal
optimality conditions just reduces to the Karush-Kuhn-Tucker conditions!
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