Lecture 8 Linear programming (I) - intro & geometry

Kin Cheong Sou Department of Mathematical Sciences Chalmers University of Technology and Göteborg University November 25, 2014

CHALMERS

) GÖTEBORGS UNIVERSITET

▲□▶ ▲□▶ ▲臣▶ ★臣▶ 三臣 - のへで

Linear programs (LP)

Consider a linear program (LP):

 $z^* = \text{infimum} \quad c^T x,$ subject to $x \in P,$

where P is a polyhedron (i.e., $P = \{x \mid Ax \leq b\}$).

- $A \in \mathbb{R}^{m \times n}$ is a given matrix, and b is a given vector,
- ▶ Inequalities interpreted entry-wise (i.e., $(Ax)_i \leq (b)_i$, i = 1, ..., m),
- Minimize a linear function, over a polyhedron (i.e., solution set of finitely many linear inequality constraints).

Formulation

Inequality constraints $Ax \leq b$ (i.e., $x \in P$) might look restrictive, but in fact more general:

•
$$x \ge \mathbf{0}^n \iff -l^n x \le \mathbf{0}^n$$
,
• $Ax \ge b \iff -Ax \le -b$,
• $Ax = b \iff Ax \le b$ and $-Ax \le -b$.

In particular, we often consider **polyhedron in standard form**:

$$P = \{x \in \mathbb{R}^n \mid Ax = b, x \ge \mathbf{0}^n\}.$$

P is a polyhedron, since $P = \{x \in \mathbb{R}^n \mid \tilde{A}x \leq \tilde{b}\}$ for some \tilde{A} and \tilde{b} .

We say that a LP is written in standard form if

$$z^* = \text{infimum} \quad c^T x,$$

subject to $Ax = b,$
 $x \ge \mathbf{0}.$

- Meaning that $P = \{x \in \mathbb{R}^n \mid Ax = b, x \ge \mathbf{0}\}.$
- Without loss of generality, we can assume $b \ge \mathbf{0}$.
- But standard form LP can in fact model all LP's.

Rewriting to standard form LP

► For example, we can add **slack variables** to transform inequality form LP into standard form LP.

(I):
$$\begin{array}{c} \underset{x}{\text{minimize}} & c^{T}x, \\ \text{subject to} & Ax \leq b. \end{array} \qquad (II): \begin{array}{c} \underset{x,s}{\text{minimize}} & c^{T}x, \\ \text{subject to} & Ax + \mathbf{s} = b, \\ & x \geq \mathbf{0}, \quad \mathbf{s} \geq \mathbf{0}. \end{array}$$

 x^{\star} optimal to (I) $\iff (x^{\star}, s^{\star})$ optimal to (II) for some $s^{\star} \geq \mathbf{0}$.

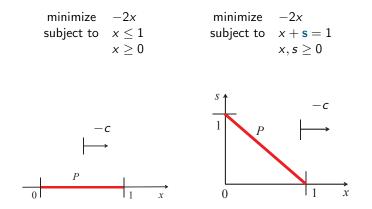
▶ If some variable x_j is not sign-constrained, substitute by

$$x_j = x_j^+ - x_j^-, \quad x_j^+, x_j^- \ge 0$$

• Equivalent linear programs do not need to have same feasible set.

Rewriting to standard form, example

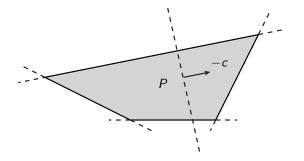
Standard form



Equivalent linear programs, but different polyhedra!

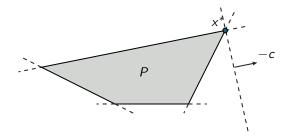
Linear programs (LP)

 $z^* = \inf m m c^T x,$
subject to $x \in P,$



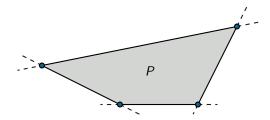
Linear programs (LP)

 $z^* = \text{infimum} \quad c^T x,$ subject to $x \in P,$



Optimality attained at extreme point.

An **extreme point** of a convex set S is a point that cannot be written as a convex combination of two other points in S.



 Extreme point has algebraic equivalence: basic feasible solution (BFS).

Standard form polyhedron $P = \{x \mid Ax = b, x \ge \mathbf{0}\}, A \in \mathbb{R}^{m \times n}$, rank(A) = m

A point \bar{x} is a **basic solution** if

•
$$A\bar{x} = b$$
, and

• the columns of A corresponding to non-zero components of \bar{x} are linearly independent (and extendable to a basis of \mathbb{R}^m). (Recall that: $A\bar{x} = \sum_{j=1}^n a_j \bar{x}_j$, where a_j is column j of A.)

Basic solution (II)

Standard form polyhedron $P = \{x \mid Ax = b, x \ge \mathbf{0}\}, A \in \mathbb{R}^{m \times n}, \operatorname{rank}(A) = m$

Procedure for constructing basic solution \bar{x}

- 1. Choose *m* linearly independent columns of *A*.
- 2. Rearrange A (i.e., re-label the decision variables) so that A = (B, N), with $B \in \mathbb{R}^{m \times m}$ stacked by the *m* chosen linearly independent columns (i.e., rank(B) = m).
- 3. Set $\bar{x}_{m+1} = \ldots = \bar{x}_n = 0$. These are called **nonbasic variables**, denoted x_N .
- 4. Solve equation $Bx_B = b$ (i.e., $A\bar{x} = b$) for $\bar{x}_1, \ldots, \bar{x}_m$. The variables in x_B are called **basic variables**. *B* is called a **basis**.

$$P = \{x \mid Ax = b, x \ge \mathbf{0}\}, \ A = \begin{pmatrix} 1 & 0 & -1 & 0 & 0 \\ 1 & -1 & 0 & -2 & 0 \\ 2 & 0 & 0 & 1 & 1 \end{pmatrix}, \ b = \begin{pmatrix} 3 \\ 1 \\ 7 \end{pmatrix}$$

Choose m linearly independent columns of A, and re-arrange A:

$$B = \begin{pmatrix} 0 & -1 & 0 \\ -1 & 0 & -2 \\ 0 & 0 & 1 \end{pmatrix}, \quad N = \begin{pmatrix} 1 & 0 \\ 1 & 0 \\ 2 & 1 \end{pmatrix}$$

• Set $\bar{x}_4 = \bar{x}_5 = 0$ (i.e., $x_N = \mathbf{0}$).

Solve
$$x_B = B^{-1}b = \begin{pmatrix} 0 & -1 & 0 \\ -1 & 0 & -2 \\ 0 & 0 & 1 \end{pmatrix}^{-1} \begin{pmatrix} 3 \\ 1 \\ 7 \end{pmatrix} = \begin{pmatrix} -15 \\ -3 \\ 7 \end{pmatrix}$$

• Basic solution $\bar{x} = \begin{pmatrix} x_B \\ x_N \end{pmatrix}$. Note: basic solution need not be feasible.

Basic feasible solution (BFS)

Standard form polyhedron $P = \{x \mid Ax = b, x \ge \mathbf{0}\}, A \in \mathbb{R}^{m \times n}$, rank(A) = m

A point \bar{x} is a **basic feasible solution** (BFS) if it is a basic solution that is feasible. That is, \bar{x} is a BFS if

► $\bar{x} \ge \mathbf{0}$,

•
$$A\bar{x} = b$$
, and

► the columns of A corresponding to non-zero components of x̄ are linearly independent (and extendable to a basis of ℝ^m).

$$\bar{x} = \begin{pmatrix} x_B \\ x_N \end{pmatrix}, A = \begin{pmatrix} B & N \end{pmatrix}, A\bar{x} = Bx_B + Nx_N = b \implies \bar{x} = \begin{pmatrix} B^{-1}b \\ \mathbf{0}^{n-m} \end{pmatrix}$$

Feasibility $\implies x_B = B^{-1}b \ge \mathbf{0}$.

Standard form polyhedron $P = \{x \mid Ax = b, x \ge 0\}$, $A \in \mathbb{R}^{m \times n}$, rank(A) = m

• Let \bar{x} be a BFS

$$\bar{x} = \begin{pmatrix} x_B \\ x_N \end{pmatrix}, A = \begin{pmatrix} B & N \end{pmatrix}, A\bar{x} = Bx_B + Nx_N = b \implies \bar{x} = \begin{pmatrix} B^{-1}b \\ \mathbf{0}^{n-m} \end{pmatrix}$$

- \bar{x} is a **degenerate** BFS if some entries of $x_B = B^{-1}b$ are zero.
- ► The partitions of (B, N) leading to degenerate BFS x̄ are not unique.

Example of BFS

$$P = \{x \mid Ax = b, x \ge \mathbf{0}\}, \ A = \begin{pmatrix} 1 & 0 & -1 & 0 & 0 \\ 1 & -1 & 0 & -2 & 0 \\ 2 & 0 & 0 & 1 & 1 \end{pmatrix}, \ b = \begin{pmatrix} 3 \\ 1 \\ 7 \end{pmatrix}$$

Basic solution, but not feasible

$$B = \begin{pmatrix} 0 & -1 & 0 \\ -1 & 0 & -2 \\ 0 & 0 & 1 \end{pmatrix}, \quad N = \begin{pmatrix} 1 & 0 \\ 1 & 0 \\ 2 & 1 \end{pmatrix} \implies \begin{pmatrix} x_B \\ x_N \end{pmatrix} = \begin{pmatrix} -15 \\ -3 \\ 7 \\ 0 \\ 0 \end{pmatrix}$$

Basic feasible solution (BFS)

$$B = \begin{pmatrix} 1 & 0 & 0 \\ 1 & -1 & 0 \\ 2 & 0 & 1 \end{pmatrix}, \quad N = \begin{pmatrix} -1 & 0 \\ 0 & -2 \\ 0 & 1 \end{pmatrix} \implies \begin{pmatrix} x_B \\ x_N \end{pmatrix} = \begin{pmatrix} 3 \\ 2 \\ 1 \\ 0 \\ 0 \end{pmatrix}$$

BFS

/ \

$$P = \{x \mid Ax = b, x \ge \mathbf{0}\}, \ A = \begin{pmatrix} 1 & 0 & -1 & 0 & 0 \\ 1 & -1 & 0 & -2 & 0 \\ 2 & 0 & 0 & 1 & 1 \end{pmatrix}, \ b = \begin{pmatrix} 3 \\ 1 \\ 7 \end{pmatrix}$$

Degenerate BFS, with two different partitions (B, N) and (B', N'):

$$B = \begin{pmatrix} 1 & 0 & 0 \\ 1 & -2 & 0 \\ 2 & 1 & 1 \end{pmatrix}, \quad N = \begin{pmatrix} 0 & -1 \\ -1 & 0 \\ 0 & 0 \end{pmatrix} \implies \begin{pmatrix} x_B \\ x_N \end{pmatrix} = \begin{pmatrix} 3 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

$$B' = \begin{pmatrix} 1 & 0 & -1 \\ 1 & -2 & 0 \\ 2 & 1 & 0 \end{pmatrix}, \quad N' = \begin{pmatrix} 0 & 0 \\ -1 & 0 \\ 0 & 1 \end{pmatrix} \implies \begin{pmatrix} x_B \\ x_N \end{pmatrix} = \begin{pmatrix} 3 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

Theorem

Assume rank(A) = m. A point \bar{x} is an extreme point of polyhedron $\{x \in \mathbb{R}^n \mid Ax = b, x \ge \mathbf{0}\}$ if and only if it is a basic feasible solution.

Proof: We show it on blackboard, or consult Theorem 8.7 in text.

Thus,

- "extreme point = basic feasible solution (BFS)".
- So, we focus optimal solution search in BFS's (extreme points). Now let's formally show that the restriction is justified!

Representation thm, standard form polyhedron BFS

- ▶ $P = \{x \in \mathbb{R}^n \mid Ax = b, x \ge 0\}$ (i.e., polyhedron in standard form)
- $V = \{v^1, \dots, v^k\}$ be the extreme points of P

•
$$C = \{x \in \mathbb{R}^n \mid Ax = \mathbf{0}, x \ge \mathbf{0}\}$$

• $D = \{d^1, \ldots, d^r\}$ be the extreme directions of C

Representation Theorem (standard form polyhedron) For $x \in \mathbb{R}^n$, $x \in P$ iff it is the sum of a convex combination of points in V and a non-negative linear combination of points in D, i.e.

$$x = \sum_{i=1}^{k} \alpha_i \mathbf{v}^i + \sum_{j=1}^{r} \beta_j \mathbf{d}^j,$$

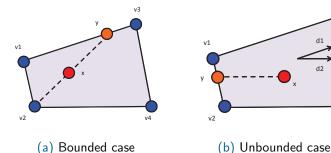
where $\alpha_1, \ldots, \alpha_k \ge 0$, $\sum_{i=1}^k \alpha_i = 1$ and $\beta_1, \ldots, \beta_r \ge 0$

Proof: See text Theorem 8.9 (In the proof, Th. 8.9 should be Th. 3.26).

BFS

Representation theorem provides "inner representation" of polyhedron.

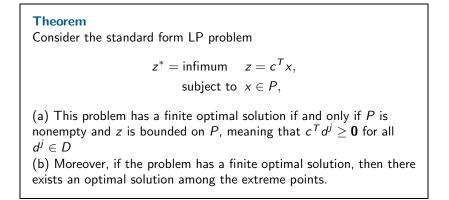
- (a) x is convex combo. of v² and y, and y is convex combo. of v¹ and v³ ⇒ x is convex combo. of v¹, v² and v³.
- (b) x is convex combo. of v^1 and v^2 , plus $\beta_2 d^2$.



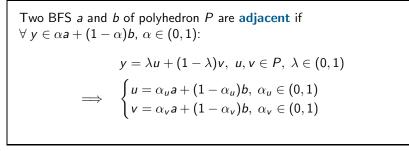
Optimality of extreme points

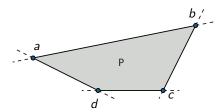
BFS

Now we can present the theorem regarding optimality of extreme points



Proof: We show it on blackboard, or see Theorem 8.10 in text.





a adjacent to b and d but not c

Linear programming (I) - intro & geometry

Theorem

Let u and v be two different BFS's corresponding to partitions (B^1, N^1) and (B^2, N^2) respectively. Assume that all but one columns of B^1 and B^2 are the same. Then u and v are adjacent BFS's.

Proof: We show it on blackboard, or see Proposition 8.13 in text.

- Theorem useful in geometric interpretation of simplex algorithm (next lecture).
- A converse of the theorem holds (see text).

So far, we have seen

- All linear programs can be written in standard form.
- Extreme point = basic feasible solution (BFS).
- If a standard form LP has finite optimal solution, then it has an optimal BFS.

We finally have rationale to search only the BFS's to solve a standard form LP. This is the main characteristic of the **simplex algorithm**.