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FormulationLinear programs (LP)

Consider a linear program (LP):

z∗ = infimum cT x ,

subject to x ∈ P ,

where P is a polyhedron (i.e., P = {x | Ax ≤ b}).

◮ A ∈ R
m×n is a given matrix, and b is a given vector,

◮ Inequalities interpreted entry-wise (i.e., (Ax)i ≤ (b)i , i = 1, . . . ,m),

◮ Minimize a linear function, over a polyhedron (i.e., solution set of
finitely many linear inequality constraints).
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FormulationPolyhedra in different forms

Inequality constraints Ax ≤ b (i.e., x ∈ P) might look restrictive,
but in fact more general:

◮ x ≥ 0n ⇐⇒ −I nx ≤ 0n,

◮ Ax ≥ b ⇐⇒ −Ax ≤ −b,

◮ Ax = b ⇐⇒ Ax ≤ b and − Ax ≤ −b.

In particular, we often consider polyhedron in standard form:

P = {x ∈ R
n | Ax = b, x ≥ 0n}.

P is a polyhedron, since P = {x ∈ R
n | Ãx ≤ b̃} for some Ã and b̃.
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Standard formStandard form linear programs

We say that a LP is written in standard form if

z∗ = infimum cT x ,

subject to Ax = b,

x ≥ 0.

◮ Meaning that P = {x ∈ R
n | Ax = b, x ≥ 0}.

◮ Without loss of generality, we can assume b ≥ 0.

◮ But standard form LP can in fact model all LP’s.
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Standard formRewriting to standard form LP

◮ For example, we can add slack variables to transform inequality
form LP into standard form LP.

(I ) :
minimize

x
cT x ,

subject to Ax ≤ b.
(II ) :

minimize
x,s

cT x ,

subject to Ax + s = b,

x ≥ 0, s ≥ 0.

x⋆ optimal to (I) ⇐⇒ (x⋆, s⋆) optimal to (II) for some s⋆ ≥ 0.

◮ If some variable xj is not sign-constrained, substitute by

xj = x+j − x−j , x+j , x−j ≥ 0

◮ Equivalent linear programs do not need to have same feasible set.
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Standard formRewriting to standard form, example

minimize −2x
subject to x ≤ 1

x ≥ 0

minimize −2x
subject to x + s = 1

x , s ≥ 0

x0 1

P

−c

x0 1

P
1

s
−c

Equivalent linear programs, but different polyhedra!
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Geometric interpretationLinear programs (LP)

z∗ = infimum cT x ,

subject to x ∈ P ,

P

−c
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Geometric interpretationLinear programs (LP)

z∗ = infimum cT x ,

subject to x ∈ P ,

P

−c

x∗

◮ Optimality attained at extreme point.

TMA947 – Lecture 8 Linear programming (I) - intro & geometry 8 / 23



BFSExtreme point

An extreme point of a convex set S is a point that cannot be
written as a convex combination of two other points in S .

P

◮ Extreme point has algebraic equivalence: basic feasible solution
(BFS).
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BFSBasic solution (I)

Standard form polyhedron P={x | Ax=b, x≥0}, A∈R
m×n, rank(A)=m

A point x̄ is a basic solution if

◮ Ax̄ = b, and

◮ the columns of A corresponding to non-zero components of x̄
are linearly independent (and extendable to a basis of Rm).

(Recall that: Ax̄ =
∑n

j=1 aj x̄j , where aj is column j of A.)
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BFSBasic solution (II)

Standard form polyhedron P={x | Ax=b, x≥0}, A∈R
m×n, rank(A)=m

Procedure for constructing basic solution x̄

1. Choose m linearly independent columns of A.

2. Rearrange A (i.e., re-label the decision variables) so that
A = (B,N), with B ∈ R

m×m stacked by the m chosen linearly
independent columns (i.e., rank(B) = m).

3. Set x̄m+1 = . . . = x̄n = 0. These are called nonbasic variables,
denoted xN .

4. Solve equation BxB = b (i.e., Ax̄ = b) for x̄1, . . . , x̄m. The
variables in xB are called basic variables. B is called a basis.
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BFSExample of basic solution

P = {x | Ax = b, x ≥ 0}, A =





1 0 −1 0 0
1 −1 0 −2 0
2 0 0 1 1



 , b =





3
1
7





◮ Choose m linearly independent columns of A, and re-arrange A:

B =





0 −1 0
−1 0 −2
0 0 1



 , N =





1 0
1 0
2 1





◮ Set x̄4 = x̄5 = 0 (i.e., xN = 0).

◮ Solve xB = B−1b =





0 −1 0
−1 0 −2
0 0 1





−1 



3
1
7



 =





−15
−3
7





◮ Basic solution x̄ =

(

xB
xN

)

. Note: basic solution need not be feasible.
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BFSBasic feasible solution (BFS)

Standard form polyhedron P={x | Ax=b, x≥0}, A∈R
m×n, rank(A)=m

A point x̄ is a basic feasible solution (BFS) if it is a basic solution
that is feasible. That is, x̄ is a BFS if

◮ x̄ ≥ 0,

◮ Ax̄ = b, and

◮ the columns of A corresponding to non-zero components of x̄
are linearly independent (and extendable to a basis of Rm).

x̄ =

(

xB
xN

)

, A =
(

B N
)

, Ax̄ = BxB + NxN = b =⇒ x̄ =

(

B−1b

0n−m

)

Feasibility =⇒ xB = B−1b ≥ 0.
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BFSDegenerate BFS

Standard form polyhedron P={x | Ax=b, x≥0}, A∈R
m×n, rank(A)=m

◮ Let x̄ be a BFS

x̄ =

(

xB
xN

)

, A =
(

B N
)

, Ax̄ = BxB + NxN = b =⇒ x̄ =

(

B−1b

0n−m

)

◮ x̄ is a degenerate BFS if some entries of xB = B−1b are zero.

◮ The partitions of (B,N) leading to degenerate BFS x̄ are not
unique.
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BFSExample of BFS

P = {x | Ax = b, x ≥ 0}, A =





1 0 −1 0 0
1 −1 0 −2 0
2 0 0 1 1



 , b =





3
1
7





Basic solution, but not feasible

B =





0 −1 0
−1 0 −2
0 0 1



 , N =





1 0
1 0
2 1



 =⇒

(

xB
xN

)

=













−15
−3
7
0
0













Basic feasible solution (BFS)

B =





1 0 0
1 −1 0
2 0 1



 , N =





−1 0
0 −2
0 1



 =⇒

(

xB
xN

)

=













3
2
1
0
0












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BFSDegenerate BFS example

P = {x | Ax = b, x ≥ 0}, A =





1 0 −1 0 0
1 −1 0 −2 0
2 0 0 1 1



 , b =





3
1
7





Degenerate BFS, with two different partitions (B,N) and (B ′,N ′):

B =





1 0 0
1 −2 0
2 1 1



 , N =





0 −1
−1 0
0 0



 =⇒

(

xB
xN

)

=













3
1
0
0
0













B ′ =





1 0 −1
1 −2 0
2 1 0



 , N ′ =





0 0
−1 0
0 1



 =⇒

(

xB
xN

)

=













3
1
0
0
0












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BFSBFS = extreme point

Theorem
Assume rank(A) = m. A point x̄ is an extreme point of polyhedron
{x ∈ R

n | Ax = b, x ≥ 0} if and only if it is a basic feasible solution.

Proof: We show it on blackboard, or consult Theorem 8.7 in text.

Thus,

◮ “extreme point = basic feasible solution (BFS)”.

◮ So, we focus optimal solution search in BFS’s (extreme points).
Now let’s formally show that the restriction is justified!
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BFSRepresentation thm, standard form polyhedron

◮ P = {x ∈ R
n | Ax = b, x ≥ 0} (i.e., polyhedron in standard form)

◮ V = {v1, . . . , vk} be the extreme points of P

◮ C = {x ∈ R
n | Ax = 0, x ≥ 0}

◮ D = {d1, . . . , d r} be the extreme directions of C

Representation Theorem (standard form polyhedron)
For x ∈ R

n, x ∈ P iff it is the sum of a convex combination of points
in V and a non-negative linear combination of points in D, i.e.

x =

k
∑

i=1

αiv
i +

r
∑

j=1

βjd
j
,

where α1, . . . , αk ≥ 0,
∑k

i=1 αi = 1 and β1, . . . , βr ≥ 0

Proof: See text Theorem 8.9 (In the proof, Th. 8.9 should be Th. 3.26).
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BFSIllustration of representation theorem

Representation theorem provides “inner representation” of polyhedron.

◮ (a) x is convex combo. of v2 and y , and y is convex combo. of v1

and v3 =⇒ x is convex combo. of v1, v2 and v3.

◮ (b) x is convex combo. of v1 and v2, plus β2d
2.

v1

v2

v3

v4

x

y

(a) Bounded case

v1

v2

d1

d2

x
y

(b) Unbounded case
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BFSOptimality of extreme points

Now we can present the theorem regarding optimality of extreme points

Theorem
Consider the standard form LP problem

z∗ = infimum z = cT x ,

subject to x ∈ P ,

(a) This problem has a finite optimal solution if and only if P is
nonempty and z is bounded on P , meaning that cTd j ≥ 0 for all
d j ∈ D

(b) Moreover, if the problem has a finite optimal solution, then there
exists an optimal solution among the extreme points.

Proof: We show it on blackboard, or see Theorem 8.10 in text.
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BFSAdjacent BFS’s

Two BFS a and b of polyhedron P are adjacent if
∀ y ∈ αa + (1− α)b, α ∈ (0, 1):

y = λu + (1− λ)v , u, v ∈ P , λ ∈ (0, 1)

=⇒

{

u = αua+ (1− αu)b, αu ∈ (0, 1)

v = αva+ (1 − αv )b, αv ∈ (0, 1)

a adjacent to b and d but not c

P

a

b

c
d
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BFSAlgebraic characterization of adjacency

Theorem
Let u and v be two different BFS’s corresponding to partitions
(B1,N1) and (B2,N2) respectively. Assume that all but one columns
of B1 and B2 are the same. Then u and v are adjacent BFS’s.

Proof: We show it on blackboard, or see Proposition 8.13 in text.

◮ Theorem useful in geometric interpretation of simplex algorithm
(next lecture).

◮ A converse of the theorem holds (see text).
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The simplex algorithmSummary

So far, we have seen

◮ All linear programs can be written in standard form.

◮ Extreme point = basic feasible solution (BFS).

◮ If a standard form LP has finite optimal solution, then it has an
optimal BFS.

We finally have rationale to search only the BFS’s to solve a standard
form LP. This is the main characteristic of the simplex algorithm.
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