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Linear programs (LP) Formulation

Consider a linear program (LP):

z* =infimum c¢'x,

subjectto x € P,
where P is a polyhedron (i.e., P = {x | Ax < b}).

» A€ R™*"is a given matrix, and b is a given vector,
> Inequalities interpreted entry-wise (i.e., (Ax); < (b);, i=1,...,m),

> Minimize a linear function, over a polyhedron (i.e., solution set of
finitely many linear inequality constraints).
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Polyhedra in different forms Formulation

Inequality constraints Ax < b (i.e., x € P) might look restrictive,
but in fact more general:

» x> 0" < —["x<0",
» Ax > b <— —Ax < —b,
» Ax=b «<— Ax<b and — Ax < —b.
In particular, we often consider polyhedron in standard form:
P={xeR"|Ax=0b, x> 0"}.

P is a polyhedron, since P = {x € R" | Ax < b} for some A and b.
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Standard form linear programs Standard form

We say that a LP is written in standard form if

T

z* =infimum ¢’ x,
subject to Ax = b,
x> 0.

> Meaning that P = {x e R" | Ax = b, x > 0}.
» Without loss of generality, we can assume b > 0.

» But standard form LP can in fact model all LP's.
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Rewriting to standard form LP Standard form

» For example, we can add slack variables to transform inequality
form LP into standard form LP.

. - minimize  cx,
minimize cTx,

X,S
x - i —
subject to  Ax < b. (1 subject to Ax+s=b,

x>0, s>0.

x* optimal to (I) < (x*,s*) optimal to (Il) for some s* > 0.

> If some variable x; is not sign-constrained, substitute by

i =xT —x ToxT >
6= =X g 20

» Equivalent linear programs do not need to have same feasible set.
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Rewriting to standard form, example Standard form

minimize —2x minimize —2x
subjectto x <1 subjectto x+s=1
x>0 x,s >0
S

|
s}
~

Equivalent linear programs, but different polyhedral!
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Linear programs (LP) Geometric interpretation

z* = infimum  ¢’x,

subject to x € P,
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Linear programs (LP) Geometric interpretation

z* = infimum  ¢’x,

subject to x € P,

» Optimality attained at extreme point.
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Extreme point

An extreme point of a convex set S is a point that cannot be
written as a convex combination of two other points in S.

> Extreme point has algebraic equivalence: basic feasible solution
(BFS).
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Basic solution (I)

Standard form polyhedron P={x | Ax=b,x>0}, A€R™*" rank(A)=m

A point X is a basic solution if
» Ax = b, and
» the columns of A corresponding to non-zero components of x
are linearly independent (and extendable to a basis of R™).

(Recall that: Ax = 37, a;X;, where a; is column j of A.)
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Basic solution (II)

Standard form polyhedron P={x | Ax=b,x>0}, AcR™*" rank(A)=m

Procedure for constructing basic solution X

1. Choose m linearly independent columns of A.

2. Rearrange A (i.e., re-label the decision variables) so that
A= (B, N), with B € R™*™ stacked by the m chosen linearly
independent columns (i.e., rank(B) = m).

3. Set Xpp1 = ... =X, =0. These are called nonbasic variables,
denoted xy.

4. Solve equation Bxg = b (i.e., Ax = b) for X1,...,Xm. The
variables in xg are called basic variables. B is called a basis.
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Example of basic solution

1 0 -1 0 O 3
P={x|Ax=b,x>0}, A=(1 -1 0 -2 0], b=1{1
2 0 0 1 1 7
» Choose m linearly independent columns of A, and re-arrange A:
0 -1 o0 10
B=|-1 0 -2|, N=|10
0 0 1 2 1
> Set x4 =X =0 (i.e., XN = 0)
0 -1 0\ '/3 ~15
» Solvexg=B"'bh=|-1 0 -2 1] =1 -3
0 0 1 7 7

v

. N X . . .
Basic solution x = (xB)' Note: basic solution need not be feasible.
N
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Basic feasible solution (BFS) BFS

Standard form polyhedron P={x | Ax=b,x>0}, A€R™*" rank(A)=m

A point X is a basic feasible solution (BFS) if it is a basic solution
that is feasible. That is, x is a BFS if

> x>0,
» Ax = b, and

» the columns of A corresponding to non-zero components of x
are linearly independent (and extendable to a basis of R™).

—1
>‘<:<XB>’ A=(B N), Ax=Bxg+Nxy=h :”_(:(08”‘"?)

Feasibility = xg = B"1b > 0.
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Degenerate BFS

Standard form polyhedron P={x | Ax=b,x>0}, A€R™*" rank(A)=m

» Let X be a BFS

_ XB _ _ B~ 1p
X = (XN>’ A:(B N), Ax =Bxg+ Nxy=b = x = <0n_m>

> X is a degenerate BFS if some entries of xg = B~ b are zero.

> The partitions of (B, N) leading to degenerate BFS X are not
unique.
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Example of BFS

1 0 -1 0 0 3
P={x|Ax=bx>0}, A=[1 -1 0 -2 0], b=[1
2 0 0 1 1 7
Basic solution, but not feasible
—15
0 -1 0 1 0 -3
B=[-1 0o -2, n=[1 0 <X5>_ 7
0 0 1 2 1 XN 0
0
Basic feasible solution (BFS) 3
1 0 O -1 0 2
B=[(1 -1 0|, n=[0 -2 :><XB>= 1
2 0 1 0 1 XN 0
0
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Degenerate BFS example

1 0 -1 0 O 3
P={x|Ax=bx>0}, A=[1 -1 0 -2 0|, b=11
2 0 0 1 1 7

2 1 1

3

1 0 0 0 -1 1
B=[1 -2 of, n=[-1 o :><XB): 0
0 0 XN 0

0
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BFS = extreme point

Theorem
Assume rank(A) = m. A point X is an extreme point of polyhedron
{x € R"| Ax = b, x > 0} if and only if it is a basic feasible solution.

Proof: We show it on blackboard, or consult Theorem 8.7 in text.

Thus,

”

> ‘“extreme point = basic feasible solution (BFS)

> So, we focus optimal solution search in BFS's (extreme points).
Now let's formally show that the restriction is justified!
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Representation thm, standard form polyhe

» P={xeR"| Ax=b, x > 0} (i.e., polyhedron in standard form)
» V ={vl,..., vk} be the extreme points of P

» C={xeR"|Ax=0, x >0}

» D ={d",...,d"} be the extreme directions of C

Representation Theorem (standard form polyhedron)
For x € R", x € P iff it is the sum of a convex combination of points
in V and a non-negative linear combination of points in D, i.e.

k r
X = Za;vi—FZﬁde,
i=1 j=1

where ay,...,ax >0, Zf;laizland Bis..sBr 20

Proof: See text Theorem 8.9 (In the proof, Th. 8.9 should be Th. 3.26).
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[llustration of representation theorem

Representation theorem provides “inner representation” of polyhedron.

» (a) x is convex combo. of v? and y, and y is convex combo. of v!
and v3 = x is convex combo. of v!, v2 and v3.

» (b) x is convex combo. of v! and v2, plus 3»d?.

(a) Bounded case (b) Unbounded case
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Optimality of extreme points

Now we can present the theorem regarding optimality of extreme points

Theorem
Consider the standard form LP problem

Z* =infimum z=c"x,

subject to x € P,

(a) This problem has a finite optimal solution if and only if P is
nonempty and z is bounded on P, meaning that ¢’ &’ > 0 for all

¢ eD

(b) Moreover, if the problem has a finite optimal solution, then there
exists an optimal solution among the extreme points.

Proof: We show it on blackboard, or see Theorem 8.10 in text.
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Adjacent BFS's

Two BFS a and b of polyhedron P are adjacent if
Vy€ceaa+ (1 —a)b, ac(0,1):

y=Au+(1—-Nv, u,ve P, Ae (0,1)

u=oaya+(l—a,)b, a, €(0,1)
=
v=aya+(l—ay)b, a, € (0,1)

a adjacent to b and d but not ¢
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Algebraic characterization of adjacency

Theorem

Let u and v be two different BFS's corresponding to partitions

(B, N') and (B2, N?) respectively. Assume that all but one columns
of B! and B? are the same. Then u and v are adjacent BFS's.

Proof: We show it on blackboard, or see Proposition 8.13 in text.

» Theorem useful in geometric interpretation of simplex algorithm
(next lecture).

> A converse of the theorem holds (see text).
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Summary The simplex algorithm

So far, we have seen

» All linear programs can be written in standard form.
> Extreme point = basic feasible solution (BFS).

» If a standard form LP has finite optimal solution, then it has an
optimal BFS.

We finally have rationale to search only the BFS's to solve a standard
form LP. This is the main characteristic of the simplex algorithm.
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