
Lecture 9

Linear programming (II) – simplex method

Kin Cheong Sou
Department of Mathematical Sciences
Chalmers University of Technology and Göteborg University
November 25, 2016

Deadline of Project part I already passed; please hand in ASAP

TMA947 – Lecture 9 Linear programming (II) – simplex method 2 / 30

ReviewLinear programs (LP) in standard form

! Consider LP in standard form

minimize
x

cT x ,

subject to Ax = b,

x ≥ 0.

! A ∈ Rm×n is a given matrix, and b is a given vector,

! rank(A) = m, b ≥ 0.

TMA947 – Lecture 9 Linear programming (II) – simplex method 3 / 30

ReviewBasic feasible solution (BFS)

Standard form polyhedron P={x | Ax=b, x≥0}, A∈Rm×n, rank(A)=m

A point x̄ is a basic feasible solution (BFS) if it is a basic solution
that is feasible. That is, x̄ is a BFS if

! x̄ ≥ 0,

! Ax̄ = b, and

! the columns of A corresponding to non-zero components of x̄
are linearly independent

TMA947 – Lecture 9 Linear programming (II) – simplex method 4 / 30

ReviewBasic and non-basic variables

For any BFS x̄ , we can reorder the variables according to

x̄ =

(

xB
xN

)

, A = (B,N), c =

(

cB
cN

)

,

such that

! B ∈ Rm×m, rank(B) = m.

! xN = 0n−m.

! xB = B−1b (as a consequence of Ax̄ = BxB + NxN = b).

We call

! xB the basic variables. If xB ≯ 0 then BFS x̄ is called degenerate.

! xN the non-basic variables.

! B the basis matrix. Each BFS is associated with at least one basis.

TMA947 – Lecture 9 Linear programming (II) – simplex method 5 / 30

Simplex methodSummary from last time

So far, we have seen

! All linear programs can be written in standard form.

! Extreme point = basic feasible solution (BFS).

! If a standard form LP has finite optimal solution, then it has an
optimal BFS.

We solve standard form LP by searching only the BFS’s. This is the main
characteristic of the simplex algorithm.

TMA947 – Lecture 9 Linear programming (II) – simplex method 6 / 30

Simplex methodGraphic illustration

Start at a BFS, in this case (0, 0)T .

P

−c = (1, 1)T

x1

x2
x1 − 2x2 = −1

3x1 + 2x2 = 9
(0, 0)T

TMA947 – Lecture 9 Linear programming (II) – simplex method 7 / 30

Simplex methodGraphic illustration

Find a feasible descent direction towards an adjacent BFS.

P

−c = (1, 1)T

x1

x2
x1 − 2x2 = −1

3x1 + 2x2 = 9
(0, 0)T

TMA947 – Lecture 9 Linear programming (II) – simplex method 8 / 30

Simplex methodGraphic illustration

Move along the search direction until a new BFS is found.

P

−c = (1, 1)T

x1

x2
x1 − 2x2 = −1

3x1 + 2x2 = 9

(3, 0)T

TMA947 – Lecture 9 Linear programming (II) – simplex method 9 / 30

Simplex methodGraphic illustration

Find a new feasible descent direction at the current BFS.

P

−c = (1, 1)T

x1

x2
x1 − 2x2 = −1

3x1 + 2x2 = 9

(3, 0)T

TMA947 – Lecture 9 Linear programming (II) – simplex method 10 / 30

Simplex methodGraphic illustration

Move along the search direction.

P

−c = (1, 1)T

x1

x2
x1 − 2x2 = −1

3x1 + 2x2 = 9

(2, 3/2)T

TMA947 – Lecture 9 Linear programming (II) – simplex method 11 / 30

Simplex methodGraphic illustration

If no feasible descent directions exist, the current BFS is declared optimal.

P

−c = (1, 1)T

x1

x2
x1 − 2x2 = −1

3x1 + 2x2 = 9

x∗ = (2, 3/2)T

TMA947 – Lecture 9 Linear programming (II) – simplex method 12 / 30

Simplex methodDeveloping the simplex algorithm

To develop the simplex algorithm, we translate geometric picture into
algebraic calculations. We need to...

1. Determine whether or not current BFS is optimal.

2. Find a feasible descent direction at any BFS.

3. Determine the step-size to move along a feasible descent direction.

4. Update iterate, and go back to step 1.

We will discuss in this order: 2, 3, 4, 1.

TMA947 – Lecture 9 Linear programming (II) – simplex method 13 / 30

Simplex methodSearch direction

! Simplex method updates iterate according to: x̄ ← x̄ + θd

! d is search direction, to be discussed
! θ ≥ 0 is step-size, to be discussed

! At BFS x̄ =

(

xB
xN

)

with A = (B,N); partition search dir d =

(

dB
dN

)

.

! In simplex method, we update one non-basic variable at a time

dN = ej , ej is the j-th unit vector in Rn−m for j = 1, . . . , n −m

! dB is not arbitrary – it is decided by feasibility of x̄ + θd :

A(x̄ + θd) = b =⇒ Ad = 0
A = (B,N)
======⇒ dB = −B−1Nej = −B−1Nj

We consider search directions: dj =

(

−B−1Nj

ej

)

, j = 1, . . . , n −m

TMA947 – Lecture 9 Linear programming (II) – simplex method 14 / 30

Simplex methodSearch direction, numerical example

B =

(

1 1
2 0

)

, N =

(

1 1
3 4

)

, B−1 =

(

0 1/2
1 −1/2

)

, N1 =

(

1
3

)

, N2 =

(

1
4

)

First search direction:

d1 =

(

−B−1N1

e1

)

=

⎛

⎜
⎜
⎝

(

0 −1/2
−1 1/2

)(

1
3

)

(

1
0

)

⎞

⎟
⎟
⎠

=

⎛

⎜
⎜
⎝

−3/2
1/2
1
0

⎞

⎟
⎟
⎠

Second search direction:

d2 =

(

−B−1N2

e2

)

=

⎛

⎜
⎜
⎝

(

0 −1/2
−1 1/2

)(

1
4

)

(

0
1

)

⎞

⎟
⎟
⎠

=

⎛

⎜
⎜
⎝

−2
1
0
1

⎞

⎟
⎟
⎠

TMA947 – Lecture 9 Linear programming (II) – simplex method 15 / 30

Simplex methodReduced costs

! From x̄ to x̄ + θdj , objective value change is

cT (x̄ + θdj − x̄) = θ · cTdj = θ · (cTB , cTN)

(

−B−1Nj

ej

)

:= θ · (c̃N)j

(c̃N)j := (cTN − cTB B−1N)
j
is the reduced cost for non-basic var (xN)j

c̃N := (cTN − cTB B−1N)
T
are reduced costs for all non-basic variables

! If (c̃N)j ≥ 0, dj does not decrease objective value.

! If (c̃N)j < 0, consider update x̄ + θdj with θ as large as possible
since objective value change is θ · (c̃N)j < 0 as long as θ > 0.

TMA947 – Lecture 9 Linear programming (II) – simplex method 16 / 30

Simplex methodReduced costs, numerical example

B =

(

1 1
2 0

)

, N =

(

1 1
3 4

)

, B−1 =

(

0 1/2
1 −1/2

)

, cT = (1,−1
︸ ︷︷ ︸

cT
B

, 3, 0
︸︷︷︸

cT
N

)

Reduced costs (for non-basic variables) are

c̃TN = (cTN − cTB B−1N) = (3, 0)− (1,−1)

(

0 1/2
1 −1/2

)(

1 1
3 4

)

= (1,−3)

! Search direction d1 does not decrease objective value;

! Search direction d2 may decrease objective value.

TMA947 – Lecture 9 Linear programming (II) – simplex method 17 / 30

Simplex methodReduced costs, in picture

Reduced cost (c̃N)j = (cTN − cTB B−1N)j = cTdj

! (c̃N)j is inner product of cost vector c and direction dj .

! (c̃N)j < 0 =⇒ dj has positive projection along −c .

BFS d1

d2
-c

Question: Iterate moves along dj with (c̃N)j < 0, but how far?

TMA947 – Lecture 9 Linear programming (II) – simplex method 18 / 30

Simplex methodUpdate along search direction

At BFS x̄ = (xTB , 0)T , negative reduced cost for (xN)j (i.e., (c̃N)j < 0).

! Iterate update

x̄ + θdj =

(

xB
0

)

+ θ

(

dB
dN

)

=

(

xB − θB−1Nj

θej

)

, θ ≥ 0

! If B−1Nj ≤ 0 then x̄ + θdj ≥ 0 for all θ ≥ 0. Let θ →∞, and we
conclude that objective value is unbounded from below.

! If B−1Nj " 0 some entry of xB − θB−1Nj becomes 0 as θ increases.

θ ≤ θ∗ = min
k:(B−1Nj)k>0

(xB)k
(B−1Nj)k

, and let i be s.t. θ∗ = (xB)i
(B−1Nj)i

.

! Thus, we arrive at new iterate x̄ + θ∗dj with (xB − θ∗B−1Nj)i = 0.
Note: θ∗ can be zero if x̄ is degenerate!

TMA947 – Lecture 9 Linear programming (II) – simplex method 19 / 30

Simplex methodExample, continued (1)

BFS x̄ = (1, 1, 0, 0),B =

(

1 1
2 0

)

,N =

(

1 1
3 4

)

, cB =

(

1
−1

)

, cN =

(

3
0

)

Reduced costs:

c̃TN = (cTN − cTB B−1N) = (3, 0)− (1,−1)

(

0 1/2
1 −1/2

)(

1 1
3 4

)

= (1,−3)

Search direction d2 = (−2, 1, 0, 1)T may reduce objective value.

For d2, updated iterate x̄ + θd2 is

(

xB − θB−1N2

θe2

)

=

⎛

⎜
⎜
⎝

(

1
1

)

− θ

(

0 1/2
1 −1/2

)(

1
4

)

θ

(

0
1

)

⎞

⎟
⎟
⎠

=

⎛

⎜
⎜
⎝

(

1
1

)

− θ

(

2
−1

)

θ

(

0
1

)

⎞

⎟
⎟
⎠

=⇒ max step-size θ∗ = (xB)1
(B−1N2)1

= 1
2

TMA947 – Lecture 9 Linear programming (II) – simplex method 20 / 30

Simplex methodExample, continued (2)

! Original BFS

x̄ =

⎛

⎜
⎜
⎝

1
1
0
0

⎞

⎟
⎟
⎠

! Updated iterate with θ∗

x̄ + θ∗d2 =

⎛

⎜
⎜
⎝

1
1
0
0

⎞

⎟
⎟
⎠

+ (1/2)

⎛

⎜
⎜
⎝

−2
1
0
1

⎞

⎟
⎟
⎠

=

⎛

⎜
⎜
⎝

0
3/2
0

1/2

⎞

⎟
⎟
⎠

! First basic variable turns 0, second non-basic variable turns positive

TMA947 – Lecture 9 Linear programming (II) – simplex method 21 / 30

Simplex methodIterate update, in picture

Updating x̄ + θdj either tells us objective value is unbounded (left
picture), or a possibly new point x̄ + θ∗dj is reached (right picture).

BFS d1,
BFS *d1 new BFS?

Question: What is x̄ + θ∗dj? Is it a BFS? How is it related to x̄?

TMA947 – Lecture 9 Linear programming (II) – simplex method 22 / 30

Simplex methodChange of basis

From x̄ to x̄ + θ∗dj , the i-th basic variable (xB)i becomes zero, whereas
j-th non-basic variable (xN)j (i.e., the (m + j)-th variable) becomes θ∗:

x̄ =

⎛

⎜
⎜
⎜
⎜
⎝

...
(xB)i
...
0

⎞

⎟
⎟
⎟
⎟
⎠

x̄ + θ∗dj =

⎛

⎜
⎜
⎜
⎜
⎝

...
0
...

θ∗ej

⎞

⎟
⎟
⎟
⎟
⎠

! Can show the columns a1, . . . , ai−1, am+j , ai+1, . . . , am are linearly
independent (forming a new basis), and x̄ + θ∗dj is indeed a BFS.

! We say (xB)i leaves the basis to become non-basic variable,
whereas (xN)j enters the basis to become basic variable.

! Prop 8.13 in text shows x̄ and x̄ + θ∗dj are in fact adjacent BFS’s.

TMA947 – Lecture 9 Linear programming (II) – simplex method 23 / 30

Simplex methodTo recap so far

We have seen so far...

! At a BFS with A = (B,N), compute search directions

dj =

(

−B−1Nj

ej

)

, j = 1, . . . , n−m.

! Evaluate the reduced costs c̃N := (cTN − cTB B−1N)T to see which
directions are profitable (which non-basic variable to enter basis).

! The consequence of updating x̄ + θdj for some dj with (c̃N)j < 0 –
either objective value is unbounded or an adjacent BFS is reached.

But...

! What if c̃N ≥ 0, as all our (considered) search directions are not
profitable?

TMA947 – Lecture 9 Linear programming (II) – simplex method 24 / 30

Simplex methodOptimality criterion

Nonnegative reduced costs imply optimality:

Theorem
Let x̄ be a BFS associated with basis matrix B, and let
c̃N = (cTN − cTB B−1N)

T
be the corresponding vector of reduced

costs for the non-basic variables. If c̃N ≥ 0, then x̄ is optimal.

Proof: All feasible directions d at x̄ = (xTB , xTN)
T
are of the form

d =

(

−B−1N dN
dN

)

=⇒ cTd = (cTN − cTB B−1N)
︸ ︷︷ ︸

c̃T
N

dN

c̃N ≥ 0 and dN ≥ 0 (i.e., feasible direction) implies cTd ≥ 0.

TMA947 – Lecture 9 Linear programming (II) – simplex method 25 / 30

Simplex methodThe conceptual simplex algorithm

1. Assume we have an initial BFS x̄ = (xTB , xTN)
T
with A = (B,N).

2. Compute reduced costs c̃N = (cTN − cTB B−1N)T .

! If c̃N ≥ 0, then current BFS is optimal, terminate.
! If c̃N # 0, choose some non-basic var index j s.t. (c̃N)j < 0.

3. Compute B−1Nj .

! If B−1Nj ≤ 0, then objective value is −∞, terminate.
! If B−1Nj " 0, compute θ∗ = min

k:(B−1Nj)k>0

(xB)k
(B−1Nj)k

.

4. Update x̄ ← x̄ + θ∗dj . Let i be s.t. θ∗ = (xB)i
(B−1Nj)i

. Update basis

B ←

⎡

⎣a1 · · · ai−1 am+j ai+1 · · · am

⎤

⎦ .

Reorder variables s.t. the first m variables are basic in x̄ + θ∗dj .

TMA947 – Lecture 9 Linear programming (II) – simplex method 26 / 30

Simplex methodFinite termination

Simplex algorithm terminates in finite number of steps if all
BFS’s are non-degenerate.

Theorem
If feasible set is nonempty and every BFS is non-degenerate,
then the simplex algorithm terminates in finite number of
iterations. At termination, two possibilities are allowed:
(a) an optimal basis B found with the associated optimal BFS.
(b) a direction d found s.t. Ad = 0, d ≥ 0 and cTd < 0, thus
optimal objective value is −∞.

Simplex algorithm + cycle-breaking rule (e.g. Bland’s rule)
=⇒ finite termination even with degenerate BFS.

TMA947 – Lecture 9 Linear programming (II) – simplex method 27 / 30

Simplex methodComputational complexity

! The simplex algorithm works very well in practice.

! The simplex algorithm can, in the worst case, visits all

(

n
m

)

BFS’s

before termination – worst-case computation effort is exponential.

! Polynomial-time algorithms are available (e.g., ellipsoid algorithm,
interior point algorithms). See coming lectures.

TMA947 – Lecture 9 Linear programming (II) – simplex method 28 / 30

Simplex methodThe initial BFS assumption

! So far, we assume we know an initial BFS to start simplex method.

Q: How do we find an initial BFS?

A: We are lucky if the LP is of the special form

minimize
x,y

cTx x + cTy y ,

subject to Ax + Imy = b,

x ≥ 0n,

y ≥ 0m.

! We can let (x = 0n, y = b)T be the initial BFS with initial basis Im.

Q: What if our LP is not of the special form?

A: We create one by considering the Phase-I problem.

TMA947 – Lecture 9 Linear programming (II) – simplex method 29 / 30

Simplex methodPhase-I problem for initial BFS

Phase-I problem introduces artificial variables ai in every row.

w∗ = minimize w = (1m)Ta,

subject to Ax + Ima = b,

x ≥ 0n,

a ≥ 0m.

! Why is this easier? Because a = b, x = 0n is an initial BFS.

! w∗ = 0 =⇒ Optimal solution a∗ = 0m

x∗ BFS in the original problem

! w∗ > 0 =⇒ There is no BFS to the original problem

The original problem is infeasible

TMA947 – Lecture 9 Linear programming (II) – simplex method 30 / 30

	Review
	Simplex method

