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Exam instructions

When you answer the questions

Use generally valid theory and methods.

State your methodology carefully.
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Do not answer more than one question per page.

At the end of the exam

Sort your solutions by the order of the questions.

Mark on the cover the questions you have answered.

Count the number of sheets you hand in and fill in the number on the cover.
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Question 1

(the simplex method)

Consider the following linear program:

minimize z = 2x1 + x2,

subject to 2x1 + x2 ≥ −2,

2x1 + 5x2 ≤ 6,

x2 ≥ 0.

a) Solve the problem using the simplex method. If the problem has an optimal(2p)
solution, then present the optimal solution in both the original and in the
variables used in the standard form. If the problem is unbounded, then use
your calculations to find a direction of unboundedness in both the original
variables and in the variables in the standard form.
Aid: Utilize the identity

(

a b
c d

)−1

=
1

ad − bc

(

d −b
−c a

)

.

b) Is the optimal solution obtained unique? Motivate your answer. If the(1p)
optimal solution is not unique, then state all alternative optimal solutions.

Question 2(3p)

(KKT conditions)

Let a1 ≥ a2 ≥ . . . ≥ an > 0 and consider the optimization problem to

minimize − log

(

n
∑

i=1

aixi

)

− log

(

n
∑

i=1

xi

ai

)

subject to
n
∑

i=1

xi = 1

xi ≥ 0, i = 1, . . . , n.

Show that x = (1/2, 0, . . . , 0, 1/2)T is an optimal solution.
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Question 3

(problem decomposition)

Consider the problem to minimize a convex and differentiable function f of the
form

f(x) :=
∑

i∈I

fi(xi),

where I is a finite index set and xi ∈ R
n, subject to two types of constraints: (1)

an individual feasible set for each “block” of variables xi, of the form

xi ∈ Xi, i ∈ I,

where the sets Xi are non-empty polyhedral sets in R
n, and (2) a total resource

constraint of the form
∑

i∈I

xi ≤ u,

for some vector u ∈ R
n.

a) Describe how a Lagrangian relaxation algorithm for this problem would ap-(2p)
pear if we Lagrangian relax the resource constraint. Describe in particular
the appearance of the Lagrangian subproblem, and how you would solve it.
Can you easily provide a lower bound on the optimal value of the original
problem? How?

b) Suppose next that f is quadratic and that ni = 1 for all i ∈ I. Describe(1p)
how the Lagrangian subproblem can be solved analytically.
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Question 4(3p)

(Frank-Wolfe algorithm)

Consider the problem to

minimize
x1,x2

f(x) :=
(

x1 x2

)

(

6 2
2 9

)(

x1

x2

)

−
(

52 34
)

(

x1

x2

)

,

subject to x1 + 2x2 ≤ 4,

x1 + x2 ≤ 3,

2x1 ≤ 5,

x1 ≥ 0,

x2 ≥ 0.

(1)

Solve problem (1) with the Frank–Wolfe algorithm. Start with initial guess x
(0) =

(x1, x2)
T = (2.5, 0)T. Use exact minimization for line search. If necessary, you are

allowed to carry out the calculations approximately with two digits of accuracy.

[Hint: You may find it helpful to analyze the problem and the algorithm progress
in a picture, but this should be augmented with rigorous analysis.]

Question 5

(true or false)

The below three claims should be assessed. Are they true or false? Provide an
answer together with a short but complete motivation.

a) Suppose that you wish to solve a linear integer program, and that you start(1p)
by solving its continuous relaxation. Suppose that x̄ is a solution to this
problem. Then, an optimal solution to the integer program can always be
found by rounding, individually, each element of x̄ either up or down to the
nearest integer value.

b) Suppose that you are able to solve a nonlinear optimization problem and(1p)
that in a globally optimal solution to it there is one inequality constraint
that is satisfied with strict inequality. Then, this inequality is redundant,
and can be removed without affecting the optimal solution.

c) Suppose that you consider minimizing a convex and differentiable function(1p)
f over a closed convex set S, and that you have found an optimal solution
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x
∗. Suppose also that there is another optimal solution x̄. Then, all points

on the line segment between x
∗ and x̄ must also be optimal.

Question 6(3p)

(the Relaxation Theorem)

Given the problem to find

f ∗ := infimum
x

f(x), (1a)

subject to x ∈ S, (1b)

where f : R
n → R is a given function and S ⊆ R

n, we define a relaxation to (1)
to be a problem of the following form: find

f ∗

R := infimum
x

fR(x), (2a)

subject to x ∈ SR, (2b)

where fR : R
n → R is a function with the property that fR ≤ f on S, and where

SR ⊇ S. For this pair of problems, we have the following basic result. You are
asked to establish it.

Theorem 1 (Relaxation Theorem)

(a) [relaxation] f ∗
R ≤ f ∗.

(b) [infeasibility] If (2) is infeasible, then so is (1).

(c) [optimal relaxation] If the problem (2) has an optimal solution, x
∗
R, for which

it holds that
x
∗

R ∈ S and fR(x∗

R) = f(x∗

R), (3)

then x
∗
R is an optimal solution to (1) as well.
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Question 7

(modelling)

Consider a square with side length L and corners in (0, 0), (0, L), (L, 0) and (L,L).
Formulate the problem of placing n circles inside the square in such a way that no
circles overlap and such that the total area covered by the circles is maximized.
Note that the radius of each circle should also be a variable in the optimization
model.

Tip: Let ri be the radius of circle i = 1, . . . , n, and let (xi, yi) be the coordinate
of the center point of circle i = 1, . . . , n. These are the only variables you will
need in the optimization model.

In the figures below you can see one feasible solution and two infeasible solutions
for the problem when n = 4.

Feasible Infeasible
(not inside the square)

Infeasible
(overlapping)


