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When you answer the questions

Use generally valid theory and methods.
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Question 1

(linear programming)

The following linear optimization problem is given:

minimize z = 5x1 + 40x2 + 4x3 − x4,

subject to −1

2
x1 + 3x2 + x3 − x4 ≥ 6,

x1 + 4x2− x3 − x4 ≥ 7,

x1, x2 , x3, x4 ≥ 0.

a) Show that x2, x3 are optimal basic variables. (Note: The simplex method(2p)
need not be used.)

Aid: You may utilize the identity(
a b
c d

)−1

=
1

ad− bc

(
d −b
−c a

)
.

b) Assume that the right-hand side of both linear constraints decrease by(1p)
δ ≥ 0. For what range of values of δ are x2 and x3 still optimal basic
variables?

Question 2(3p)

(the Separation Theorem)

Given a closed and convex set C ⊂ Rn and a vector y ∈ Rn which does not belong
to C, the Separation Theorem states a result on the existence of a separating
hyperplane. State the Separation Theorem precisely, and establish its correctness
with a complete proof.
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Question 3(3p)

(Lagrangian duality)

Given is the following problem over x ∈ Rn:

minimize f(x),

subject to g1(x) ≤ 0, (1)

g2(x) ≤ 0, (2)

x ∈ S,

where f, g1, g2 : Rn → R, and S ⊆ Rn.

Constraints (1) and (2) are Lagrangian relaxed using multipliers µ1 ≥ 0 and
µ2 ≥ 0, respectively.

A heuristic was used to try and find feasible solutions of x by making suitable
adjustments of the multipliers µ. The table below shows numerical results for
a number of different values of the multipliers, given in the order they were
examined. The point xk is the optimal value from the Lagrangian problem in x
using the multipliers (µ1, µ2)

k.

k (µ1, µ2)
k xk f(xk) g1(x

k) g2(x
k)

1 (0, 0) x1 −3.0 8.0 12.0
2 (3, 3) x2 1.0 −3.0 5.0
3 (1.5, 6) x3 9.0 2.0 −1.0
4 (2.25, 4.5) x4 12.0 −1.0 −0.5
5 (2, 3.75) x5 8.0 0.0 1.0
6 (2.16, 4) x6 12.25 −0.25 −0.25

Use the information in the table to give the best possible estimate of the optimal
objective function value of the given problem, i.e. the smallest interval for f ∗.
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Question 4(3p)

(modelling)

In the labyrinth puzzle game there are usually several possible routes, and people
need to pick the route that gives the highest probability to reach the required
end point. Let’s simplify this into a mathematical modelling problem. Figure 1
shows a grid of dimension I×J . The starting point is (1, 1), and the end point is
(I, J). At each point, it is possible to move to one of the (at most four) adjacent
points. Thus, a move is defined as rolling the ball from one point to another
adjacent point. Let p be the probability of failure during a move. Each move
then has three possible scenarios:

1. The passage contains a hole, where the ball could fall down with the prob-
ability p ∈ [0, 1]. Falling down indicates failure at the game.

2. The passage is blocked by a wall, which makes it impossible to pass. Trying
to pass through this means failure at the game with a probability p = 1.

3. The passage contains no obstacle, which gives the probability of failing
p = 0.

Thus, when a move is done from a point (i1, j1) to an adjacent point (i2, j2),
there is a probability p(i1,j1)(i2,j2) of failing which will end the game. Moreover,
performing moves is tiresome for the player and there is therefore an upper limit
of performing S moves. Furthermore assume that a move can be made (at most)
once, where a move is defined as moving from one point to another adjacent
point.

Figure 1: A simplified model of the labyrinth puzzle game

Formulate an integer program to determine the route which maximizes the prob-
ability of succeeding at reaching the end point.
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Question 5

(necessary local and sufficient global optimality conditions)

Consider an optimization problem of the following general form:

minimize f(x), (1a)

subject to x ∈ S, (1b)

where S ⊆ Rn is nonempty, closed and convex, and f : Rn → R is in C1 on S.

a) Establish the following result on the local optimality of a vector x∗ ∈ S in(1p)
this problem.

Proposition 1 (necessary optimality conditions, C1 case) If x∗ ∈ S is a
local minimum of f over S then

∇f(x∗)T(x− x∗) ≥ 0, x ∈ S (2)

holds.

b) Establish the following result on the global optimality of a vector x∗ ∈ S(2p)
in this problem.

Theorem 2 (necessary and sufficient global optimality conditions, C1 case)
Suppose that f : Rn → R further is convex on S. Then,

x∗ is a global minimum of f over S ⇐⇒ (2) holds.
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Question 6

(true or false)

The below three individual claims should be assessed individually. Are they true
or false, or is it impossible to say? For each of the three statements, provide an
answer, together with a short—but complete— motivation.

a) Suppose a function f : Rn → R is differentiable at a vector x ∈ Rn.(1p)

Claim: for the vector p ∈ Rn to be a descent direction with respect to f at
x it is necessary that ∇f(x)Tp < 0.

b) Consider solving a linear program (call it “P”) through the process of uti-(1p)
lizing “phase I” and “phase II” of the Simplex method. Suppose that the
optimal value in the phase I-problem is zero.

Claim: There exists an optimal solution to the linear program P.

c) Claim: If the function g : Rn → R is concave on Rn and c ∈ R, then the(1p)
set {x ∈ Rn | g(x) ≤ c } is convex.

Question 7(3p)

(the Karush–Kuhn–Tucker conditions)

Consider the problem to:

maximize f(x) := x1 − x21,
subject to x1 ≥ 2,

x2 − (x1 − 3)2 ≥ −2,
x1 − x2 ≥ 1.

a) Express the KKT conditions, and find all KKT points.(2p)

b) Are the KKT points optimal? Motivate!(1p)


