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Exam instructions

When you answer the questions

Use generally valid theory and methods.
State your methodology carefully.

Only write on one page of each sheet. Do not use a red pen.
Do not answer more than one question per page.

At the end of the exam

Sort your solutions by the order of the questions.
Mark on the cover the questions you have answered.

Count the number of sheets you hand in and fill in the number on the cover.
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Question 1

(the simplex method)

Consider the following linear program:

maximize z = x1 + 2x2,

subject to x1 + x2 ≥ −1,

x1 − x2 ≥ 1,

x1, x2 ≥ 0.

a) Solve the problem using phase I and phase II of the simplex method.(2p)

Aid: You may utilize the identity(
a b
c d

)−1
=

1

ad− bc

(
d −b
−c a

)
.

b) If an optimal solution exists, then use your calculations to decide whether(1p)
it is unique or not. If the problem is unbounded, then use your calculations
to specify a direction of unboundedness of the objective value.
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Question 2(3p)

(gradient projection)

The gradient projection algorithm is a generalization of the steepest descent
method to problems defined over convex sets. Given a point xk the next point
is obtained according to xk+1 = ProjX [xk − αk∇f(xk)], where X is the con-
vex set over which we minimize, αk > 0 is the step length, and ProjX(y) :=
argminx∈X ||x − y|| (i.e., the closest point in X to y). Note that if X = R then
the method reduces to the method of steepest descent.

Consider the optimization problem to

minimize f(x) := x31 + 2x22 + 2x1x2 − 2x1,

subject to 0 ≤ x1 ≤ 1,

0 ≤ x2 ≤ 2.

Start at the point x0 = (0, 2)T and perform one iteration of the gradient pro-
jection algorithm using step length αk = 1/8. Note that the special form of
the feasible region X makes the projection very easy! Is the point obtained a
global/local optimum? Motivate why/why not!

Question 3(3p)

(optimality conditions for special feasible sets)

Consider the problem of minimizing the function f(x) :=
∑

j=1,...,n fj(xj) over a
set of the form S := {x ∈ Rn |

∑n
j=1 xj = b; xj ≥ 0,∀j }. We assume that f is

in C1 on S, and of course that b > 0, such that S is non-empty.

This problem is often referred to as the resource allocation problem, since it
entails allocating fractions of the resource b to “activity levels” xj in an optimal
manner, considering the minimization of the “cost function” f , and the available
resources, represented by the value of b.

Utilize the optimality conditions for differentiable optimization over closed, con-
vex sets to establish that any stationary point x∗ must satisfy the conditions
that for some value µ∗ ∈ R it holds that f ′j(x

∗
j) = µ∗, for all j with x∗j > 0, while

f ′j(x
∗
j) ≥ µ∗, for all j with x∗j = 0.
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Question 4

(Karush-Kuhn-Tucker)

Consider the following problem:

minimize f(x) := 2x1 − x21,
subject to x21 + x22 ≥ 25,

x1 ≤ 4,

x2 ≤ 4,

x1, x2 ≥ 0.

a) State the KKT-conditions for the problem and check whether they are(2p)
necessary or not, sufficient or not.

b) Find all KKT-points. Are the KKT points optimal? Motivate!(1p)

Question 5(3p)

(modelling)

The set covering problem is a classical question in combinatorics, computer sci-
ence and complexity theory. Given a set of elements U = {1, 2, ..., n} (called the
universe) and a collection S of m sets whose union equals the universe, the set
cover problem is the problem to identify the smallest sub-collection of S whose
union equals the universe.

For example, consider the universe U = {1, 2, 3, 4, 5} and the collection of sets
S = {{1, 2, 3}, {2, 4}, {3, 4}, {4, 5}}. Clearly the union of S is U . However,
we can cover all of the elements with the following, smaller number of sets:
{{1, 2, 3}, {4, 5}}. This is also the smallest sub-collection whose union is U .

A generalization of this problem is the weighted set covering problem where each
set in S has a cost associated with it. The objective in the weighted set covering
problem is to find a sub-collection of S whose union equals the universe, and so
that the sum of the costs of the sets in the sub-collection is minimized.

Formulate an integer linear program (a linear objective function, linear con-
straints, and integrality restrictions on the variables) which models the weighted
set covering problem.
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Question 6

(true or false)

The below three claims should be assessed. Are they true or false, or is it impos-
sible to say? Provide an answer, together with a short, but complete, motivation.

a) Suppose the function f : Rn → R is differentiable at a vector x ∈ Rn.(1p)

Claim: for the vector p ∈ Rn to be a descent direction with respect to f at
x it is necessary that ∇f(x)Tp < 0.

b) Suppose you attack the problem of minimizing the twice continuously dif-(1p)
ferentiable function f : Rn → R by means of Newton’s method, using an
exact line search. Suppose the iterate is xt, and that the result of iteration
t is the next iterate xt+1.

Claim: ∇f(xt+1)T(xt+1 − xt) = 0 holds.

c) Claim: A line segment in Rn is not a polyhedron.(1p)

Question 7(3p)

(Farkas’ lemma)

Farkas’ Lemma can be states as follows:

Let A be any m× n matrix and b an m× 1 vector. Then exactly one of the two
systems

Ax = b,

x ≥ 0n,

and

ATy ≤ 0m,

bTy > 0,

has a feasible solution, and the other system is inconsistent.

Prove Farkas’ Lemma.


