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Question 1

(the simplex method)

a) We first rewrite the problem on standard form. We multiply the objective(2p)
by (−1) to obtain a minimization problem, multibly the second constraint
by (−1) to obtain a positive r.h.s., and introduce slack variables s1 and s2.

minimize z = −x1 −2x2

subject to x1 +x2 −s1 = 1
−x1 +x2 +s2 = 2
x1, x2, s1, s2 ≥ 0.

In phase I the artificial variable a is added in the first constraint, s2 is used
as the second basic variable in order to obtain a unit matrix as the first
basis. We obtain the phase I problem

minimize w = a
subject to x1 +x2 −s1 +a = 1

−x1 +x2 +s2 = 2
x1, x2, s1, s2, a ≥ 0.

The starting BFS is thus (a, s2)
T. Calculating the vector of reduced costs for

the non-basic variables x1, x2, s1 yields (−1,−1, 1)T. We can choose between
x1 and x2 as entering variable. We let x2 enter the basis. The minimum
ratio test shows that a should leave the basis. We thus have a BFS without
artificial variables, and may proceed with phase II.

We have the basic variables (x2, s2). The vector of reduced costs for the
non-basic variables x1 and s1 is (1,−2). We let s1 enter the basis. The
minimum ratio test implies that s2 leaves the basis. We now have x2, s1

as basic variables. The vector of reduced costs for the non-basic variables
x1 and s1 is (−1, 2)T. Thus we let x1 enter the basis. We have that the
column corresponding to x1 is B−1N 1 = (−1,−2)T. Hence the problem is
unbounded.

b) The non-basic variable s2 = 0, as we let x1 = µ we have that(1p)

(x2, s1)
T = B−1b − B−1N 1µ = (2, 1)T + (1, 2)Tµ.

Returning to the original variables we have that

(x1, x2)
T = (0, 2)T + (1, 1)Tµ

is the direction of unboundedness. To see that this is correct draw the
problem!
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Question 2(3p)

(modeling) Let xi be the amount of fuel purchased at city i, i = 1, . . . , n. We also
introduce a variable yi to denote the amount of fuel in the plane when leaving
city i. Then we can formulate the problem as

minimize
n
∑

i=1

cixi, (1)

subject to xi ≤ Ki, i = 1, . . . , n (2)

zi − wi = yi, i = 1, . . . , n, (3)

yi ≤ M, i = 1, . . . , n, (4)

xi ≤ Ki, i = 1, . . . , n, (5)

yi ≥ αizi, i = 1, . . . , n, (6)

xi+1 + yi − αizi = yi+1, i = 1, . . . , n − 1, (7)

xi, yi, zi ≥ 0, i = 1, . . . , n. (8)

Question 3

(interior penalty methods)

a) All functions involved are in C1. The conditions on the penalty function(1p)
are fulfilled, since φ′(s) = 1/s2 ≥ 0 for all s < 0. Further, LICQ holds
everywhere. The answer is yes.

b) With the given data, it is clear that the only constraint is (almost) ful-(2p)
filled with equality: (x6)

2
1 − (x6)2 ≈ −0.005422 ≈ 0. We set up the KKT

conditions to see whether it is fulfilled approximately. Indeed, we have the
following corresponding to the system ∇f(x6) + µ̂6∇g(x6) = 02:

(

−6.4094265
3.39524

)

+ 3.385

(

1.88778
−1

)

≈

(

−0.01929
0.01024

)

,

and the right-hand side can be considered near-zero. Since µ̂6 ≥ 0 we
approximately fulfill the KKT conditions.

For the last part, we establish that the problem is convex. The feasible set
clearly is convex, since g is a convex function and the constraint is on the
“≤”-form. The Hessian matrix of f is

(

12(x1 − 2)2 + 2 −4
−4 8

)

,
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which is positive semidefinite everywhere (in fact, positive definite outside
of the region defined by x1 = 2); hence, f is convex on R

2. We conclude
that our problem is convex, and hence the KKT conditions imply global op-
timality. The vector x6 therefore is an approximate global optimal solution
to our problem.

Question 4

(Lagrangian duality)

a) We begin by constructing the Lagrangian function(1p)

L(x, µ) =
1

2
xTQx + cTx + µT(b − Ax).

The dual function is defined as

q(µ) = min
x∈Rn

L(x, µ).

We have that ∇2
x
L(x, µ) = Q which is positive definite, thus the uncon-

strained problem defining q is convex. We solve the sufficient optimality
condition ∇xL(x, µ) = 0 and obtain

Qx + c − ATµ = 0,

x = Q−1(ATµ − c).

Inserting this into the definition of the Lagrangian function we obtain

q(µ) =
1

2
(µTA − cT)Q−1QQ−1(ATµ − c) + (cT

− µA)Q−1(ATµ − c) + µTb

= −
1

2
(µTA − c)Q−1(ATµ − c) + µTb.

The dual problem is minµ≥0 q(µ) which is in the same form as the original
quadratic program after appropriate restructure of terms.

b) The Hessian of the dual is(1p)

∇
2q(µ) = −AQ−1AT.

The dual function is always concave, so we know that all eigenvalues are
non-negative. The question is if Q has strictly positive eigenvalues, does it
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imply that the Hessian to q has strictly positive eigenvalues? The answer
is no. Consider Q = I and

A =







1 0
0 1
−1 −1





 .

We have that

−AAT =







−1 0 1
0 −1 1
1 1 −2





 .

Adding the first rows to the third shows that the rows are linearly depen-
dent, hence −ATA has zero as an eigenvalue. In fact, if A ∈ R

m×n and
m > n then we always obtain 0 as an eigenvalue. A simpler counter-example
is possible with one variable and two constraints, but one of the constraints
will then be redundant.

c) If Q is p.d. then the following holds: Since Q is the Hessian of the primal(1p)
objective, if Q is p.d. then the primal problem is convex. The dual problem
is always a convex problem. The dual function is differentialble since it is
a second degree polynomial. For a convex problem, the dual gap is zero.

If Q has a negative eigenvalue then the primal problem is no longer convex.
Let v be an eigenvector of Q with negative eigenvalue λ < 0. We have that

L(αv, µ) =
1

2
λα2vTv + αcTv + µT(b − αAv) → −∞,

as α → ∞. This implies that q(µ) := −∞ for all µ. Hence the dual gap is
no longer zero unless the primal problem is unbounded.

Question 5(3p)

(optimality conditions)

Farkas’ Lemma is established in Theorem 11.10.



EXAM SOLUTION
TMA947/MAN280 — APPLIED OPTIMIZATION 5

Question 6(3p)

(LP duality)

We can write the dual problem as

maximize bTy,

subject to ATy ≤ c,

y ≥ 0m.

From weak duality, we know that for any primal feasible x and dual feasible y,
we have cTx ≥ bTy. If cTx ≤ bTy for a primal feasible x and a dual feasible
y, we obtain from strong duality that x is optimal in the primal problem, and
y is optimal in the dual problem. Hence, all solutions x (respectively, y) to the
linear inequality system

Ax ≥ b,

ATy ≤ c,

cTx − bTy ≤ 0,

x ≥ 0n,

y ≥ 0m,

will be optimal solutions to the primal (respectively, dual) problem. To find the
best optimal solution to the primal problem with respect to the linear function
eTx, we can therefore solve the linear program to

minimize eTx,

subject to Ax ≥ b,

ATy ≤ c,

cTx − bTy ≤ 0,

x ≥ 0n,

y ≥ 0m.

Question 7(3p)

(sequential linear programming)

Suppose that p = 0n solves the SLP subproblem (2). When representing the
optimality conditions for this problem, we then note that the bound constraints
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(2d) on p are redundant. Writing down the KKT conditions for p in the problem
(2), we therefore obtain the conditions that

∇f(xk) +
m
∑

i=1

µi∇gi(xk) +
ℓ
∑

j=1

λi∇hi(xk) = 0n, (1a)

µigi(x
∗) = 0, i = 1, . . . , m, (1b)

µ ≥ 0m. (1c)

But this is a statement that x∗ is a KKT point in the original problem.


