TMA947/MAN280 APPLIED OPTIMIZATION

Date: 11-12-12
Examiner: Michael Patriksson

Question 1

(the simplex method)
$\mathbf{(2 p)}$ a) We first rewrite the problem on standard form. We multiply the objective by (-1) to obtain a minimization problem, multibly the second constraint by (-1) to obtain a positive r.h.s., and introduce slack variables s_{1} and s_{2}.

$$
\begin{array}{lrrlrl}
\operatorname{minimize} z=x_{1} & -2 x_{2} & & & \\
\text { subject to } & x_{1} & +x_{2} & -s_{1} & & =1 \\
& -x_{1} & +x_{2} & & +s_{2} & =2 \\
& x_{1}, & x_{2}, & s_{1}, & s_{2} & \geq 0 .
\end{array}
$$

In phase I the artificial variable a is added in the first constraint, s_{2} is used as the second basic variable in order to obtain a unit matrix as the first basis. We obtain the phase I problem

$$
\begin{array}{lrllrl}
\operatorname{minimize} \quad w= & & & a \\
\text { subject to } & & & & \\
& x_{1} & +x_{2} & -s_{1} & & +a
\end{array}=1 .
$$

The starting BFS is thus $\left(a, s_{2}\right)^{\mathrm{T}}$. Calculating the vector of reduced costs for the non-basic variables x_{1}, x_{2}, s_{1} yields $(-1,-1,1)^{\mathrm{T}}$. We can choose between x_{1} and x_{2} as entering variable. We let x_{2} enter the basis. The minimum ratio test shows that a should leave the basis. We thus have a BFS without artificial variables, and may proceed with phase II.
We have the basic variables $\left(x_{2}, s_{2}\right)$. The vector of reduced costs for the non-basic variables x_{1} and s_{1} is $(1,-2)$. We let s_{1} enter the basis. The minimum ratio test implies that s_{2} leaves the basis. We now have x_{2}, s_{1} as basic variables. The vector of reduced costs for the non-basic variables x_{1} and s_{1} is $(-1,2)^{\mathrm{T}}$. Thus we let x_{1} enter the basis. We have that the column corresponding to x_{1} is $\boldsymbol{B}^{-1} \boldsymbol{N}_{1}=(-1,-2)^{\mathrm{T}}$. Hence the problem is unbounded.
$(1 \mathbf{p})$ b) The non-basic variable $s_{2}=0$, as we let $x_{1}=\mu$ we have that

$$
\left(x_{2}, s_{1}\right)^{\mathrm{T}}=\boldsymbol{B}^{-1} \boldsymbol{b}-\boldsymbol{B}^{-1} \boldsymbol{N}_{1} \mu=(2,1)^{\mathrm{T}}+(1,2)^{\mathrm{T}} \mu .
$$

Returning to the original variables we have that

$$
\left(x_{1}, x_{2}\right)^{\mathrm{T}}=(0,2)^{\mathrm{T}}+(1,1)^{\mathrm{T}} \mu
$$

is the direction of unboundedness. To see that this is correct draw the problem!

(3p) Question 2

(modeling) Let x_{i} be the amount of fuel purchased at city $i, i=1, \ldots, n$. We also introduce a variable y_{i} to denote the amount of fuel in the plane when leaving city i. Then we can formulate the problem as

$$
\begin{align*}
\operatorname{minimize} & \sum_{i=1}^{n} c_{i} x_{i} \tag{1}\\
\text { subject to } & \tag{2}\\
x_{i} & \leq K_{i}, \quad i=1, \ldots, n \tag{3}\\
z_{i}-w_{i} & =y_{i}, \quad i=1, \ldots, n, \tag{4}\\
y_{i} & \leq M, \quad i=1, \ldots, n, \tag{5}\\
x_{i} & \leq K_{i}, \quad i=1, \ldots, n, \tag{6}\\
y_{i} & \geq \alpha_{i} z_{i}, \quad i=1, \ldots, n \tag{7}\\
x_{i+1}+y_{i}-\alpha_{i} z_{i} & =y_{i+1}, \quad i=1, \ldots, n-1, \tag{8}\\
x_{i}, y_{i}, z_{i} & \geq 0, \quad i=1, \ldots, n .
\end{align*}
$$

Question 3

(interior penalty methods)
(1p) a) All functions involved are in C^{1}. The conditions on the penalty function are fulfilled, since $\phi^{\prime}(s)=1 / s^{2} \geq 0$ for all $s<0$. Further, LICQ holds everywhere. The answer is yes.
$(2 \mathbf{p}) \quad$ b) With the given data, it is clear that the only constraint is (almost) fulfilled with equality: $\left(\boldsymbol{x}_{6}\right)_{1}^{2}-\left(\boldsymbol{x}_{6}\right)_{2} \approx-0.005422 \approx 0$. We set up the KKT conditions to see whether it is fulfilled approximately. Indeed, we have the following corresponding to the system $\nabla f\left(\boldsymbol{x}_{6}\right)+\hat{\mu}_{6} \nabla g\left(\boldsymbol{x}_{6}\right)=\mathbf{0}^{2}$:

$$
\binom{-6.4094265}{3.39524}+3.385\binom{1.88778}{-1} \approx\binom{-0.01929}{0.01024}
$$

and the right-hand side can be considered near-zero. Since $\hat{\mu}_{6} \geq 0$ we approximately fulfill the KKT conditions.
For the last part, we establish that the problem is convex. The feasible set clearly is convex, since g is a convex function and the constraint is on the " \leq "-form. The Hessian matrix of f is

$$
\left(\begin{array}{cc}
12\left(x_{1}-2\right)^{2}+2 & -4 \\
-4 & 8
\end{array}\right)
$$

which is positive semidefinite everywhere (in fact, positive definite outside of the region defined by $x_{1}=2$); hence, f is convex on \mathbb{R}^{2}. We conclude that our problem is convex, and hence the KKT conditions imply global optimality. The vector \boldsymbol{x}_{6} therefore is an approximate global optimal solution to our problem.

Question 4

(Lagrangian duality)
(1p) a) We begin by constructing the Lagrangian function

$$
L(\boldsymbol{x}, \boldsymbol{\mu})=\frac{1}{2} \boldsymbol{x}^{\mathrm{T}} \boldsymbol{Q} \boldsymbol{x}+\boldsymbol{c}^{\mathrm{T}} \boldsymbol{x}+\boldsymbol{\mu}^{\mathrm{T}}(\boldsymbol{b}-\boldsymbol{A} \boldsymbol{x}) .
$$

The dual function is defined as

$$
q(\boldsymbol{\mu})=\min _{x \in \mathbb{R}^{n}} L(\boldsymbol{x}, \boldsymbol{\mu})
$$

We have that $\nabla_{x}^{2} L(\boldsymbol{x}, \boldsymbol{\mu})=\boldsymbol{Q}$ which is positive definite, thus the unconstrained problem defining q is convex. We solve the sufficient optimality condition $\nabla_{x} L(\boldsymbol{x}, \boldsymbol{\mu})=\mathbf{0}$ and obtain

$$
\begin{aligned}
\boldsymbol{Q} \boldsymbol{x}+\boldsymbol{c}-\boldsymbol{A}^{\mathrm{T}} \boldsymbol{\mu} & =\mathbf{0} \\
\boldsymbol{x} & =\boldsymbol{Q}^{-1}\left(\boldsymbol{A}^{\mathrm{T}} \boldsymbol{\mu}-\boldsymbol{c}\right)
\end{aligned}
$$

Inserting this into the definition of the Lagrangian function we obtain

$$
\begin{aligned}
q(\boldsymbol{\mu}) & =\frac{1}{2}\left(\boldsymbol{\mu}^{\mathrm{T}} \boldsymbol{A}-\boldsymbol{c}^{\mathrm{T}}\right) \boldsymbol{Q}^{-1} \boldsymbol{Q} \boldsymbol{Q}^{-1}\left(\boldsymbol{A}^{\mathrm{T}} \boldsymbol{\mu}-\boldsymbol{c}\right)+\left(\boldsymbol{c}^{\mathrm{T}}-\boldsymbol{\mu} \boldsymbol{A}\right) \boldsymbol{Q}^{-1}\left(\boldsymbol{A}^{\mathrm{T}} \boldsymbol{\mu}-\boldsymbol{c}\right)+\boldsymbol{\mu}^{\mathrm{T}} \boldsymbol{b} \\
& =-\frac{1}{2}\left(\boldsymbol{\mu}^{\mathrm{T}} \boldsymbol{A}-\boldsymbol{c}\right) \boldsymbol{Q}^{-1}\left(\boldsymbol{A}^{\mathrm{T}} \boldsymbol{\mu}-\boldsymbol{c}\right)+\boldsymbol{\mu}^{\mathrm{T}} \boldsymbol{b}
\end{aligned}
$$

The dual problem is $\min _{\boldsymbol{\mu} \geq 0} q(\boldsymbol{\mu})$ which is in the same form as the original quadratic program after appropriate restructure of terms.
(1p) b) The Hessian of the dual is

$$
\nabla^{2} q(\boldsymbol{\mu})=-\boldsymbol{A} \boldsymbol{Q}^{-1} \boldsymbol{A}^{\mathrm{T}}
$$

The dual function is always concave, so we know that all eigenvalues are non-negative. The question is if \boldsymbol{Q} has strictly positive eigenvalues, does it
imply that the Hessian to q has strictly positive eigenvalues? The answer is no. Consider $\boldsymbol{Q}=\boldsymbol{I}$ and

$$
\boldsymbol{A}=\left(\begin{array}{cc}
1 & 0 \\
0 & 1 \\
-1 & -1
\end{array}\right)
$$

We have that

$$
-\boldsymbol{A} \boldsymbol{A}^{\mathrm{T}}=\left(\begin{array}{ccc}
-1 & 0 & 1 \\
0 & -1 & 1 \\
1 & 1 & -2
\end{array}\right)
$$

Adding the first rows to the third shows that the rows are linearly dependent, hence $-\boldsymbol{A}^{\mathrm{T}} \boldsymbol{A}$ has zero as an eigenvalue. In fact, if $\boldsymbol{A} \in \mathbb{R}^{m \times n}$ and $m>n$ then we always obtain 0 as an eigenvalue. A simpler counter-example is possible with one variable and two constraints, but one of the constraints will then be redundant.
$\mathbf{(1 p)}$ c) If \boldsymbol{Q} is p.d. then the following holds: Since \boldsymbol{Q} is the Hessian of the primal objective, if \boldsymbol{Q} is p.d. then the primal problem is convex. The dual problem is always a convex problem. The dual function is differentialble since it is a second degree polynomial. For a convex problem, the dual gap is zero.

If \boldsymbol{Q} has a negative eigenvalue then the primal problem is no longer convex. Let \boldsymbol{v} be an eigenvector of \boldsymbol{Q} with negative eigenvalue $\lambda<0$. We have that

$$
L(\alpha \boldsymbol{v}, \boldsymbol{\mu})=\frac{1}{2} \boldsymbol{\lambda} \alpha^{2} \boldsymbol{v}^{\mathrm{T}} \boldsymbol{v}+\alpha \boldsymbol{c}^{\mathrm{T}} \boldsymbol{v}+\boldsymbol{\mu}^{\mathrm{T}}(\boldsymbol{b}-\alpha \boldsymbol{A} \boldsymbol{v}) \rightarrow-\infty
$$

as $\alpha \rightarrow \infty$. This implies that $q(\boldsymbol{\mu}):=-\infty$ for all $\boldsymbol{\mu}$. Hence the dual gap is no longer zero unless the primal problem is unbounded.

(3p) Question 5

(optimality conditions)

Farkas' Lemma is established in Theorem 11.10.

(3p) Question 6

(LP duality)
We can write the dual problem as

$$
\begin{aligned}
\text { maximize } & \boldsymbol{b}^{\mathrm{T}} \boldsymbol{y} \\
\text { subject to } \quad \boldsymbol{A}^{\mathrm{T}} \boldsymbol{y} & \leq \boldsymbol{c} \\
\boldsymbol{y} & \geq \mathbf{0}^{m} .
\end{aligned}
$$

From weak duality, we know that for any primal feasible \boldsymbol{x} and dual feasible \boldsymbol{y}, we have $\boldsymbol{c}^{\mathrm{T}} \boldsymbol{x} \geq \boldsymbol{b}^{\mathrm{T}} \boldsymbol{y}$. If $\boldsymbol{c}^{\mathrm{T}} \boldsymbol{x} \leq \boldsymbol{b}^{\mathrm{T}} \boldsymbol{y}$ for a primal feasible \boldsymbol{x} and a dual feasible \boldsymbol{y}, we obtain from strong duality that \boldsymbol{x} is optimal in the primal problem, and \boldsymbol{y} is optimal in the dual problem. Hence, all solutions \boldsymbol{x} (respectively, \boldsymbol{y}) to the linear inequality system

$$
\begin{aligned}
\boldsymbol{A} \boldsymbol{x} \quad & \geq \boldsymbol{b}, \\
\boldsymbol{A}^{\mathrm{T}} \boldsymbol{y} & \leq \boldsymbol{c}, \\
\boldsymbol{c}^{\mathrm{T}} \boldsymbol{x}-\boldsymbol{b}^{\mathrm{T}} \boldsymbol{y} & \leq 0, \\
\boldsymbol{x} \quad & \geq \mathbf{0}^{n}, \\
\boldsymbol{y} & \geq \mathbf{0}^{m},
\end{aligned}
$$

will be optimal solutions to the primal (respectively, dual) problem. To find the best optimal solution to the primal problem with respect to the linear function $\boldsymbol{e}^{\mathrm{T}} \boldsymbol{x}$, we can therefore solve the linear program to

$$
\begin{aligned}
\operatorname{minimize} \quad \boldsymbol{e}^{\mathrm{T}} \boldsymbol{x}, & \\
\text { subject to } \quad \boldsymbol{A} \boldsymbol{x} & \geq \boldsymbol{b}, \\
\boldsymbol{A}^{\mathrm{T}} \boldsymbol{y} & \leq \boldsymbol{c}, \\
\boldsymbol{c}^{\mathrm{T}} \boldsymbol{x}-\boldsymbol{b}^{\mathrm{T}} \boldsymbol{y} & \leq 0, \\
\boldsymbol{x} & \geq \mathbf{0}^{n}, \\
& \boldsymbol{y}
\end{aligned} \mathbf{0}^{m} .
$$

(3p) Question 7

(sequential linear programming)
Suppose that $\boldsymbol{p}=\mathbf{0}^{n}$ solves the SLP subproblem (2). When representing the optimality conditions for this problem, we then note that the bound constraints
(2d) on \boldsymbol{p} are redundant. Writing down the KKT conditions for \boldsymbol{p} in the problem (2), we therefore obtain the conditions that

$$
\begin{align*}
\nabla f\left(\boldsymbol{x}_{k}\right)+\sum_{i=1}^{m} \mu_{i} \nabla g_{i}\left(\boldsymbol{x}_{k}\right)+\sum_{j=1}^{\ell} \lambda_{i} \nabla h_{i}\left(\boldsymbol{x}_{k}\right) & =\mathbf{0}^{n}, \tag{1a}\\
\mu_{i} g_{i}\left(\boldsymbol{x}^{*}\right) & =0, \quad i=1, \ldots, m, \tag{1b}\\
\boldsymbol{\mu} & \geq \mathbf{0}^{m} . \tag{1c}
\end{align*}
$$

But this is a statement that \boldsymbol{x}^{*} is a KKT point in the original problem.

