TMA947/MMG621 NONLINEAR OPTIMISATION

Date: 14-04-22
Examiner: Michael Patriksson

Question 1

(the simplex method)
$(2 \mathbf{p})$ a) We first rewrite the problem on standard form. We introduce slack variables s_{1} and s_{2} and $x_{1}=x_{1}^{+}-x_{1}^{-}$. Consider the following linear program:

$$
\begin{aligned}
& \operatorname{minimize} z=2 x_{1}^{+}-2 x_{1}^{-}+x_{2} \\
& \text { subject to } \\
& -2 x_{1}^{+}+2 x_{1}^{-}-x_{2}+s_{1}=2, \\
& \\
& \\
& 2 x_{1}^{+}-2 x_{1}^{-}+5 x_{2}+s_{2}=6, \\
& x_{1}^{+}, \quad x_{1}^{-}, \quad x_{2}, \quad s_{1}, \quad s_{2} \geq 0 .
\end{aligned}
$$

Phase II

The Phase I does not have to be used in this case, the starting basis is obviously $\left(s_{1}, s_{2}\right)$.
Calculating the reduced costs, we obtain $\tilde{\mathbf{c}}_{N}=(2,-2,1)^{\mathrm{T}}$, meaning that x_{1}^{-}should enter the basis. From the minimum ratio test, we get that the outgoing variable is s_{1}. Updating the basis we now have $\left(x_{1}^{-}, s_{2}\right)$ in the basis.
Calculating the reduced costs, we obtain $\tilde{\mathbf{c}}_{N}=(0,0,1)^{\mathrm{T}} \geq 0$, meaning that the current basis is optimal. The optimal solution is thus

$$
\boldsymbol{x}^{*}=\left(x_{1}^{+}, x_{1}^{-}, x_{2}, s_{1}, s_{2}\right)^{\mathrm{T}}=(0,1,0,0,8)^{\mathrm{T}},
$$

which in the original variables means $\boldsymbol{x}^{*}=\left(x_{1}, x_{2}\right)^{\mathrm{T}}=(-1,0)^{\mathrm{T}}$ with optimal objective value $f^{\star}=-2$.
$(\mathbf{1 p}) \quad$ b) The reduced costs of for the optimal basis of the problem are $\tilde{\mathbf{c}}_{N}=(0,0,1)^{\mathrm{T}}$ meaning that the variable x_{2} can enter the basis and the optimal objective value will remain the same $f^{*}=-2$. The alternative optimal solution is then $\tilde{\mathbf{x}}^{*}=\left(x_{1}, x_{2}\right)^{\mathrm{T}}=(-2,2)^{\mathrm{T}}$. Hence, all points lying on the line segment connecting the extreme points \mathbf{x}^{*} and $\tilde{\mathbf{x}}^{*}$ are optimal, i.e., $\left[x_{1},-2 x_{1}-2\right], \forall x_{1} \in[-2,-1]$ is the optimal solution.

(3p) Question 2

(KKT conditions) The objective function is convex, as can be seen by noting that both terms are compositions of a convex function (i.e., $\sum_{i} a_{i} x_{i}$) and an increasing convex function $-\log ($.$) . Since the constraints are linear, the problem is a convex$ one, and the KKT conditions are thus sufficient for global optimality.

The KKT conditions become (with λ being the multiplier associated to the equality constraint, and μ_{i} being the multiplier associated to the i :th non-negativity constraint)

$$
\begin{align*}
\frac{a_{i}}{\sum_{i} a_{i} x_{i}}+\frac{1 / a_{i}}{\sum_{i} x_{i} / a_{i}}+\mu_{i} & =\lambda, \quad i=1, \ldots, n, \tag{1}\\
\sum_{i} x_{i} & =1, \tag{2}\\
x_{i} \geq 0, & i=1, \ldots, n, \tag{3}\\
\mu_{i} x_{i} & =0, \quad i=1, \ldots, n, \tag{4}\\
\mu_{i} & \geq 0, \quad i=1, \ldots, n . \tag{5}
\end{align*}
$$

Inserting $\mathbf{x}=(1 / 2,0, \ldots, 0,1 / 2)^{\mathrm{T}}$ yields a feasible solution, and show the optimality of \mathbf{x} we must produce a solution $\left(\lambda, \mu_{i}\right)$ to the system

$$
\begin{align*}
\frac{a_{i}}{a_{1}+a_{n}}+\frac{a_{i}}{\frac{1}{a_{1}}+\frac{1}{a_{n}}}+\mu_{i} & =\lambda, \quad i=1, \ldots, n \tag{6}\\
\mu_{i} & \geq 0, \quad i=1, \ldots, n \tag{7}\\
\mu_{1}=\mu_{n} & =0 \tag{8}
\end{align*}
$$

We see that using the first equality for $i=1$ yields that we must have

$$
\begin{align*}
\lambda & =\frac{a_{1}}{a_{1}+a_{n}}+\frac{1 / a_{1}}{\frac{1}{a_{1}}+\frac{1}{a_{n}}} \\
& =\frac{a_{1}\left(1 / a_{1}+1 / a_{n}\right)+1 / a_{1}\left(a_{1}+a_{n}\right)}{\left(a_{1}+a_{n}\right)\left(1 / a_{1}+1 / a_{n}\right)} \tag{9}\\
& =\frac{2+a_{1} / a_{n}+a_{n} / a_{1}}{\left(a_{1}+a_{n}\right)\left(1 / a_{1}+1 / a_{n}\right)}
\end{align*}
$$

And (due to the symmetry between a_{1} and a_{n} in the above we see that the first equality is also satisfied for $i=n$ with this λ. It only remains to show that

$$
\begin{equation*}
\mu_{i}=\frac{2+a_{1} / a_{n}+a_{n} / a_{1}}{\left(a_{1}+a_{n}\right)\left(1 / a_{1}+1 / a_{n}\right)}-\frac{a_{i}}{a_{1}+a_{n}}+\frac{a_{i}}{\frac{1}{a_{1}}+\frac{1}{a_{n}}} \geq 0 \tag{10}
\end{equation*}
$$

For all $i=2, \ldots, n-1$. But writing the above with a common denominator we get

$$
\begin{gather*}
\frac{2+a_{1} / a_{n}+a_{n} / a_{1}}{\left(a_{1}+a_{n}\right)\left(1 / a_{1}+1 / a_{n}\right)}-\frac{a_{i}}{a_{1}+a_{n}}+\frac{a_{i}}{\frac{1}{a_{1}}+\frac{1}{a_{n}}}=\frac{a_{i} / a_{1}+a_{i} / a_{n}+a_{1} / a_{i}+a_{n} / a_{i}-2-a_{1} / a_{n}-a_{n} / a_{1}}{\left(a_{1}+a_{n}\right)\left(1 / a_{1}+1 / a_{n}\right)} \\
\geq 0 \tag{11}
\end{gather*}
$$

Where the final follows since

$$
\begin{align*}
& a_{i} / a_{1} \geq 1, \tag{12}\\
& a_{n} / a_{i} \geq 1, \tag{13}\\
& a_{1} / a_{i} \geq a_{1} / a_{n}, \tag{14}\\
& a_{i} / a_{n} \geq a_{1} / a_{n} \tag{15}
\end{align*}
$$

Thus $(1 / 2,0, \ldots, 0,1 / 2)^{\mathrm{T}}$ is a KKT point, and hence optimal since the problem is convex.

Question 3

(problem decomposition)
(2p) a) The Lagrangian subproblem separates into $|\mathcal{I}|$ independent subproblems of the form

$$
\underset{x_{i} \in X_{i}}{\operatorname{minimize}} f_{i}\left(\boldsymbol{x}_{i}\right)+\boldsymbol{\mu}^{\mathrm{T}} \boldsymbol{x}_{i} \text {; }
$$

the value of the Lagrangian dual function $q(\boldsymbol{\mu})$ is the sum of these $|\mathcal{I}|$ optimal values minus $\boldsymbol{\mu}^{\mathrm{T}} \boldsymbol{u}$. Any such value is a lower bound on the optimal valuem by the Weak Duality Theorem 6.5.
$(1 \mathbf{p}) \quad \mathrm{b})$ In this case $f_{i}\left(x_{i}\right)=c_{i} x_{i}+\frac{q_{i}}{2} x_{i}^{2}$, where $q_{i} \geq 0$ for all i, hence the Lagrangian term for index i has the form $c_{i} x_{i}+\frac{q_{i}}{2} x_{i}^{2}+\mu_{i} x_{i}$. Its minimum over the closed interval X_{i} is easily found by comparing objective values at the two boundary points and potentially feasible stationary points.

(3p) Question 4

(Frank-Wolfe algorithm)

Figure 1 shows the feasible set of the problem (i.e., the polyhedron with thick black boundary lines) and some contours of the objective function. The optimal solution is denoted by x^{\star} (i.e., the red dot in the figure). $x^{(k)}$ for $k=0,1,2$ denotes iterates visited by the Frank-Wolfe algorithm.

Figure 1: Illustration of the Frank-Wolfe algorithm. The feasible set is a polyhedron with boundary denoted by the thick black lines. Some contours of the objective function are shown. The optimal solution $\boldsymbol{x}^{\star}=(2.5,0.5)$. The dotted lines show the Frank-Wolfe iterations, with $\boldsymbol{x}^{k}, k=0,1,2$ denoting the iterates.

The details of the algorithm steps are as follows. Let X denote the feasible set. Let $f\left(x_{1}, x_{2}\right)$ denote the objective function. For any given iterate $\boldsymbol{x}^{k}=\left(x_{1}^{k}, x_{2}^{k}\right)$. The objective function gradient vector is

$$
\nabla f\left(x_{1}^{k}, x_{2}^{k}\right)=\left[\begin{array}{cc}
12 & 4 \\
4 & 18
\end{array}\right]\left[\begin{array}{c}
x_{1}^{k} \\
x_{2}^{k}
\end{array}\right]-\left[\begin{array}{c}
52 \\
34
\end{array}\right]
$$

The search direction problem is

$$
\begin{equation*}
\underset{x \in X}{\operatorname{minimize}} \quad \nabla f\left(x_{1}^{k}, x_{2}^{k}\right)^{\mathrm{T}} \boldsymbol{x} \tag{1}
\end{equation*}
$$

If $\min _{x \in X} \nabla f\left(x_{1}^{k}, x_{2}^{k}\right)^{\mathrm{T}} \boldsymbol{x} \geq \nabla f\left(x_{1}^{k}, x_{2}^{k}\right)^{\mathrm{T}} x^{k}$, then by the optimality conditions (for minimizing a convex function over a convex feasible set) \boldsymbol{x}^{k} is optimal. Otherwise, let \boldsymbol{y}^{k} denote an optimal solution to the search direction problem. Then the exact minimization line search problem can be expressed into

$$
\underset{\alpha \in[0,1]}{\operatorname{minimize}} f\left(\alpha \boldsymbol{x}^{k}+(1-\alpha) \boldsymbol{y}^{k}\right) \Longleftrightarrow \underset{\alpha \in[0,1]}{\operatorname{minimize}} g \alpha^{2}+h \alpha,
$$

where

$$
\begin{align*}
g & =\left(\boldsymbol{x}^{k}-\boldsymbol{y}^{k}\right)^{\mathrm{T}}\left[\begin{array}{ll}
6 & 2 \\
2 & 9
\end{array}\right]\left(\boldsymbol{x}^{k}-\boldsymbol{y}^{k}\right) \\
h & =\left(\boldsymbol{x}^{k}-\boldsymbol{y}^{k}\right)^{\mathrm{T}}\left(\left[\begin{array}{cc}
12 & 4 \\
4 & 18
\end{array}\right] \boldsymbol{y}^{k}-\left[\begin{array}{l}
52 \\
34
\end{array}\right]\right) . \tag{2}
\end{align*}
$$

The minimizing value of α, denoted by α^{k}, can be found using the optimality condition to be

$$
\alpha^{k}=\left\{\begin{array}{lll}
0 & \text { if } \quad-\frac{h}{2 g}<0 \tag{3}\\
-\frac{h}{2 g} & \text { if } \quad 0 \leq-\frac{h}{2 g} \leq 1 \\
1 & \text { if } \quad-\frac{h}{2 g}>1
\end{array}\right.
$$

The iterate update formula is

$$
\begin{equation*}
\boldsymbol{x}^{k+1}=\alpha^{k} \boldsymbol{x}^{k}+\left(1-\alpha^{k}\right) \boldsymbol{y}^{k} . \tag{4}
\end{equation*}
$$

Now we begin applying the Frank-Wolfe algorithm. At the first iteration with $\boldsymbol{x}^{0}=(2.5,0)^{\mathrm{T}}$, the objective function gradient is

$$
\nabla f\left(x_{1}^{0}, x_{2}^{0}\right)=\left[\begin{array}{cc}
12 & 4 \\
4 & 18
\end{array}\right]\left[\begin{array}{l}
x_{1}^{0} \\
x_{2}^{0}
\end{array}\right]-\left[\begin{array}{c}
52 \\
34
\end{array}\right]=\left[\begin{array}{cc}
12 & 4 \\
4 & 18
\end{array}\right]\left[\begin{array}{c}
2.5 \\
0
\end{array}\right]-\left[\begin{array}{l}
52 \\
34
\end{array}\right]=\left[\begin{array}{l}
-22 \\
-24
\end{array}\right]
$$

To solve the search direction problem in (1), it is sufficient to restrict the feasible set to the set of all extreme points. That is,

$$
\begin{equation*}
\underset{x \in V}{\operatorname{minimize}} \nabla f\left(x_{1}^{0}, x_{2}^{0}\right)^{\mathrm{T}} \boldsymbol{x} \tag{5}
\end{equation*}
$$

where V is the set of all extreme points defined as

$$
V=\{(0,0),(0,2),(2,1),(2.5,0.5),(2.5,0)\} .
$$

This amounts to finding the minimum among five numbers: $0,-48,-68,-67$, -55 . The result is that $\boldsymbol{y}^{0}=(2,1)$. Applying the formula in (2) yields

$$
\begin{aligned}
& g=\left(\left[\begin{array}{c}
2.5 \\
0
\end{array}\right]-\left[\begin{array}{l}
2 \\
1
\end{array}\right]\right)^{\mathrm{T}}\left[\begin{array}{ll}
6 & 2 \\
2 & 9
\end{array}\right]\left(\left[\begin{array}{c}
2.5 \\
0
\end{array}\right]-\left[\begin{array}{l}
2 \\
1
\end{array}\right]\right)=8.5 \\
& h=\left(\left[\begin{array}{c}
2.5 \\
0
\end{array}\right]-\left[\begin{array}{l}
2 \\
1
\end{array}\right]\right)^{\mathrm{T}}\left(\left[\begin{array}{cc}
12 & 4 \\
4 & 18
\end{array}\right]\left[\begin{array}{l}
2 \\
1
\end{array}\right]-\left[\begin{array}{l}
52 \\
34
\end{array}\right]\right)=-4
\end{aligned}
$$

According to (3), $\alpha^{0}=\frac{4}{17}$. Hence, by (4)

$$
\boldsymbol{x}^{1}=\frac{4}{17}\left(\frac{5}{2}, 0\right)+\left(1-\frac{4}{17}\right)(2,1)=\left(\frac{36}{17}, \frac{13}{17}\right) \approx(2.12,0.76) .
$$

This is shown in Figure 1.
At the next iteration with $x^{1}=\left(\frac{36}{17}, \frac{13}{17}\right)$, we have

$$
\nabla f\left(x_{1}^{1}, x_{2}^{1}\right)=\left[\begin{array}{cc}
12 & 4 \\
4 & 18
\end{array}\right]\left[\begin{array}{l}
x_{1}^{1} \\
x_{2}^{1}
\end{array}\right]-\left[\begin{array}{l}
52 \\
34
\end{array}\right]=\frac{1}{17}\left[\begin{array}{l}
-400 \\
-200
\end{array}\right] \approx\left[\begin{array}{l}
-23.53 \\
-11.76
\end{array}\right]
$$

Solving (5) amounts to finding the minimum of $0,-4,-10,-11,-10$. This leads to $y^{1}=(2.5,0.5)$. Applying (2) leads to

$$
\begin{aligned}
& g=\frac{1275}{1156} \approx 1.10 \\
& h=\frac{125}{34} \approx 3.68
\end{aligned}
$$

Thus, according to (3) $\alpha^{1}=0$, and from (4) $x^{2}=y^{1}=(2.5,0.5)^{\mathrm{T}}$ as shown in Figure 1.

At the final iteration with $x^{2}=(2.5,0.5)^{\mathrm{T}}$, we have

$$
\nabla f\left(x_{1}^{2}, x_{2}^{2}\right)=\left[\begin{array}{l}
-20 \\
-15
\end{array}\right]
$$

Solving (5) leads to $\boldsymbol{y}^{2}=\boldsymbol{x}^{2}=(2.5,0.5)^{\mathrm{T}}$. Thus, it holds that

$$
\min _{x \in X} \nabla f\left(x_{1}^{2}, x_{2}^{2}\right)^{\mathrm{T}} \boldsymbol{x} \geq \nabla f\left(x_{1}^{2}, x_{2}^{2}\right)^{\mathrm{T}} x^{2} .
$$

By the optimality conditions, $\boldsymbol{x}^{2}=(2.5,0.5)^{\mathrm{T}}$ is the optimal solution to our problem.

Question 5

(true or false)
(1p) a) False. It is not necessarily so that any such rounding, up or down, of individual variables, lead to a feasible solution.
$(1 \mathbf{p})$ b) False. In the non-convex case there may be "better points" outside of the feasible set.
$(\mathbf{1 p}) \quad$ c) True. This is Proposition 4.26.

EXAM SOLUTION

(3p) Question 6

(the Relaxation Theorem)
This is Theorem 6.1.

(3p) Question 7

(modelling)

Let $\left(x_{i}, y_{i}\right)$ be the coordinates of the center poitn of circle $i=1, \ldots, n$, and let r_{i} be the radius of cirlce $i=1, \ldots, n$. Then the optimization problem can be formulated as the following:

$$
\begin{array}{cl}
\operatorname{maximize} & \sum_{i=1}^{n} \pi r_{i}^{2}, \\
\text { subject to } & \sqrt{\left(x_{i}-x_{j}\right)^{2}+\left(y_{i}-y_{j}\right)^{2}} \geq r_{i}+r_{j}, i \neq j, \\
& r_{i} \leq x_{i} \leq L-r_{i}, \quad i=1, \ldots, n \\
& r_{i} \leq y_{i} \leq L-r_{i}, \quad i=1, \ldots, n \\
& r_{i} \geq 0, \quad i=1, \ldots, n
\end{array}
$$

