TMA947/MMG621 NONLINEAR OPTIMISATION

Date: 15-01-13
Examiner: Michael Patriksson

Question 1

(the simplex method)
$\mathbf{(2 p)}$ a) We first rewrite the problem on standard form. We introduce slack variables s_{1} and s_{2}. Consider the following linear program:

$$
\begin{array}{rcc}
\operatorname{minimize} & z=x_{1}-\quad x_{2}+x_{3} \\
\text { subject to } & 2 x_{2}+x_{3}+s_{1}=5, \\
& x_{1}-\quad x_{2}+2 x_{3} \quad-s_{2}=5, \\
& x_{1}, \quad x_{2}, \quad x_{3}, \quad s_{1}, \quad s_{2} \geq 0 .
\end{array}
$$

An obvious starting basis is $\left(s_{1}, x_{1}\right)$ and we can thus begin directly with Phase II. Calculating the reduced costs we obtain $\tilde{\mathbf{c}}_{N}=(0,-1,1)^{\mathrm{T}}$, meaning that x_{3} enters the basis. From the minimum ratio test, we get that x_{1} leaves the basis.
Updating the basis we now have $\left(s_{1}, x_{3}\right)$ in the basis. Calculating the reduced costs, we obtain $\tilde{\mathbf{c}}_{N}=\left(\frac{1}{2},-\frac{1}{2}, \frac{1}{2}\right)^{\mathrm{T}}$. meaning that x_{2} enters the basis. From the minimum ratio test, we get that the outgoing variable is s_{1}.
Updating the basis we now have $\left(x_{2}, x_{3}\right)$ in the basis. Calculating the reduced costs, we obtain $\tilde{\mathbf{c}}_{N}=\left(\frac{2}{5}, \frac{1}{5}, \frac{3}{5}\right)^{\mathrm{T}} \geq 0$, meaning that the current basis is optimal. The optimal solution is thus

$$
\left(x_{1}, x_{2}, x_{3}, s_{1}, s_{2}\right)^{\mathrm{T}}=(0,1,3,0,0)^{\mathrm{T}},
$$

which in the original variables means $\left(x_{1}, x_{2}, x_{3}\right)^{\mathrm{T}}=(0,1,3)^{\mathrm{T}}$ with optimal objective value $f^{\star}=2$.
$(\mathbf{1 p}) \quad$ b) Calculating the reduced costs of the problem for the optimal basis of the problem from a), we obtain $\tilde{\mathbf{c}}_{N}=\left(\frac{3}{5}+\frac{1}{5} \alpha,-\frac{1}{5}-\frac{2}{5} \alpha, \frac{2}{5}-\frac{1}{5} \alpha\right)^{\mathrm{T}} \geq 0$ meaning that the the optimal solution from a) remains optimal for $-3 \leq \alpha \leq-\frac{1}{2}$.

(3p) Question 2

(convexity)
This is Theorem 4.3.

Question 3

(KKT optimality conditions)
(1p) a) With $\boldsymbol{z}=(2,3 / 2)^{\mathrm{T}}$, the optimization problem to solve is that to

$$
\begin{array}{lrl}
\operatorname{minimize} & \frac{1}{2}\|\boldsymbol{x}-\boldsymbol{z}\|^{2} \\
\text { subject to } & x_{1}+x_{2} \leq 3 / 2 \\
& x_{j} & \geq 0, j=1,2
\end{array}
$$

The objective function is clearly a convex function and the feasible set is a convex set. Hence, the optimization problem is a convex optimization problem.
(1p) b) The KKT conditions for a feasible vector \boldsymbol{x}^{*} are as follows:

$$
\begin{aligned}
\binom{x_{1}^{*}}{x_{2}^{*}}-\binom{2}{3 / 2}+\mu_{1}\binom{1}{1}+\mu_{2}\binom{-1}{0}+\mu_{3}\binom{0}{-1} & =\binom{0}{0} \\
\mu_{1}\left(x_{1}^{*}+x_{2}^{*}-3 / 2\right) & =0 \\
\mu_{2} x_{1}^{*} & =0 \\
\mu_{3} x_{3}^{*} & =0 \\
\mu_{j} & \geq 0, \quad j=1,2,3 .
\end{aligned}
$$

All constraints are affine, so the KKT conditions are necessary for optimality. Since it is a convex optimization problem, the KKT conditions are also sufficient for optimality.
$\mathbf{(1 p)} \quad$ c) At $\boldsymbol{x}^{*}=(1,1 / 2)^{\mathrm{T}}$, it must hold that $\mu_{2}=0$ and $\mu_{3}=0$. The remaining part of the KKT conditions is then:

$$
\mu_{1}\binom{1}{1}=\binom{1}{1}
$$

which has solution $\mu_{1}=1 \geq 0$. Hence, the point \boldsymbol{x}^{*} is a KKT. From b) we know that it is also an optimal solution.

Question 4

(the gradient projection algorithm)

We have that $\nabla f(\boldsymbol{x})=\left(2 x_{1}+x_{2}-10, x_{1}+4 x_{2}-4\right)^{\mathrm{T}}$. So $\nabla f\left(\boldsymbol{x}_{0}\right)=(-5,2)^{\mathrm{T}}$ and $\boldsymbol{x}_{0}-\alpha_{0} \nabla f\left(\boldsymbol{x}_{0}\right)=(9 / 2,0)^{\mathrm{T}}$. Performing the projection we get that $\boldsymbol{x}_{1}=$ $\operatorname{Proj}_{X}\left(\boldsymbol{x}_{0}-\alpha_{0} \nabla f\left(\boldsymbol{x}_{0}\right)\right)=\operatorname{Proj}_{X}\left((9 / 2,0)^{\mathrm{T}}\right)=(2,0)^{\mathrm{T}}$.

It holds $\nabla f\left(\boldsymbol{x}_{1}\right)=(-6,-2)^{\mathrm{T}}$ and $\boldsymbol{x}_{1}-\alpha_{1} \nabla f\left(\boldsymbol{x}_{1}\right)=(7 / 2,1 / 2)^{\mathrm{T}}$. Performing the projection we get that $\boldsymbol{x}_{2}=\operatorname{Proj}_{X}\left(\boldsymbol{x}_{1}-\alpha_{1} \nabla f\left(\boldsymbol{x}_{1}\right)\right)=\operatorname{Proj}_{X}\left((7 / 2,1 / 2)^{\mathrm{T}}\right)=$ $(2,1 / 2)^{\mathrm{T}}$.

The point \boldsymbol{x}_{2} is actually a global minimum. This can be verified by either taking another step with the algorithm or by noting that the point is a KKT-point.

(3p) Question 5

(modelling)

For each word w_{i}, we introduce a binary decision variable x_{i} such that $x_{i}=1$ if and only if word w_{i} is built. For each pair of words w_{i} and w_{j} with $j>i$, a binary variable $y_{i j}$ is used. If $x_{i}=0$ or $x_{j}=0$ we require that $y_{i j}=0$. A model can then be written as

$$
\begin{aligned}
& \operatorname{maximize} \quad \sum_{i=1}^{n} p_{i} x_{i}+\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} b_{i j} y_{i j} \\
& \text { subject to } \\
& \sum_{i=1}^{n} o_{i \alpha} x_{i} \leq N_{\alpha}, \quad \forall \alpha \\
& y_{i j} \leq x_{i}, \quad i, j=1, \ldots, n, j>i \\
& y_{i j} \leq x_{j}, \quad i, j=1, \ldots, n, j>i \\
& y_{i j} \in\{0,1\}, \quad i, j=1, \ldots, n, j>i \\
& x_{i} \in\{0,1\}, i=1, \ldots, n \text {. }
\end{aligned}
$$

The program is linear with binary variables.

Question 6

(true or false)
(1p) a) False. Take $f(x):=e^{x}$.
$(1 \mathbf{p}) \quad$ b) False. Take $f(x):=x^{4}$ at $x=0$.
(1p) c) True. See Proposition 3.65.

(3p) Question 7

(the Separation Theorem)
This is Theorem 4.28.

