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Question 1

(the simplex method)

a) We first rewrite the problem on standard form. We introduce slack variables(2p)
s1 and s2. Consider the following linear program:

minimize z = − 2x1 − x2

subject to −x1 + x2 + s1 = 1,

x1 − 2x2 + s2 = 2,

x1, x2, s1, s2 ≥ 0.

In phase I the starting basis is (s1, s2)
T. Calculating the reduced costs for

the non-basic variables x1, x2 we obtain c̃N = (−2,−1)T, meaning that x1

enters the basis. From the minimum ratio test, we get that s2 leaves the
basis.

Updating the basis we now have (s1, x1)
T in the basis. Calculating the

reduced costs, we obtain c̃N = (2,−5)T. meaning that x2 enters the basis.
From the minimum ratio test we get B−1N2 = (−1,−2)T < 0, meaning
that the problem is unbounded.

b) A direction of unboudness is l(µ) = (2, 0, 3, 0)T + µ(2, 1, 1, 0)T, µ ≥ 0.(1p)

Question 2(3p)

(consistency of linear systems)

Consider to linear program to

minimize
x

−cTx,

subject to Ax ≤ b,
(1)

and its standard form equivalent

minimize
x+,x−,s

−cTx+ + cTx−,

subject to Ax+ − Ax− + s = b,

x+ ≥ 0, x− ≥ 0, s ≥ 0.

(2)
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The dual of (2) is to

maximize
p

bTp,

subject to ATp ≤ −c,

−ATp ≤ c,

p ≤ 0,

(3)

and (3) is equivalent to

maximize
y

−bTy,

subject to ATy = c,

y ≥ 0.

(4)

If statement (a) holds, then the optimal objective value of (1) and (2) are bounded
from below by −d. Hence, by there exists an optimal solution to the dual of (2),
which is (3). Consequently, by strong duality (cf. Theorem 10.6) the optimal
objective values of (3) and (4) are equal to that of (2), which is bounded from
below by −d. This implies that, for (4), there exists a vector y ≥ 0 such that
ATy = c and −bTy ≥ −d (i.e., bTy ≤ d). This statement is the same as (b).

Conversely, if (b) holds then (3) has at least one feasible solution with objective
value bounded from below by −d. Hence, by weak duality (cf. Theorem 10.4)
every x feasible in (1) (i.e., Ax ≤ b) must satisfy −cTx ≥ −d. This implies
statement (a).

Question 3(3p)

(global optimality conditions)

This is Theorem 6.8.

Question 4(3p)

(modelling)

The decision variables are:

xA = number of units of product A produced
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xB = number of units of product B produced

y1 = 1, if additional time is used, 0 otherwise

y2 = 1, if more than ten units of product A is produced, 0 otherwise

Based on these definitions, the model is as follows:

maximize 200xA + 400xB − 1200y1

subject to 2xA + 3xB ≤ 40 + 8y1,

100y2 ≥ xA − 10,

xB ≥ 5y2,

xA, xB ≥ 0, integer

y1, y2 ∈ {0, 1}

The program is linear with integer variables.

Question 5

(true or false)

a) False. The directional derivative must be non-negative in all directions p.(1p)

b) False. The problem is feasible but may have an unbounded solution.(1p)

c) True. This is a consequence of Theorem 4.23.(1p)

Question 6(3p)

(nonlinear programming)

Letting µ denote the Lagrange multiplier for the equality constraint, and λ ∈ R
n
+

denote the vector of multipliers for the sign constraints, we obtain the Lagrangian

L(x, µ, λ) := f(x) + µ





n
∑

j=1

xj − r



− λTx.

Consider the optimality condition for xj :

∂L(x, µ, λ)

∂xj

=
∂f(x)

∂xj

− µ − λj = 0, j = 1, . . . , n.
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Further, we have that λ∗

jx
∗

j = 0, by complementarity. If x∗

j > 0 then λ∗

j = 0, and

hence ∂f(x∗)
∂xj

= µ∗ (hence a common partial derivative for all positive variables),

while if x∗

j = 0 then ∂f(x∗)
∂xj

= µ∗ + λ∗

j , which may be larger.

Question 7(3p)

(gradient projection algorithm)

Denote the objective function by f(x1, x2) := 3x2
1 − 2x1x2 + 2x2

2, and the (box)
feasible set by X. Then, ∇f(x) = (6x1 − 2x2,−2x1 + 4x2)

T. At the initial point
x0 = (1,−2)T, the gradient is ∇f(x0) = (10,−10)T. To determine step length
α0, we apply the Armijo criterion supplied. We first try α0 = ᾱ = 1 (as β0 = 1).
Note that

ProjX [x0 −∇f(x0)] = ProjX

[(

1 − 10
−2 + 10

)]

=

(

0
−1

)

ProjX [x0 −∇f(x0)] − x0 =

(

0
−1

)

−

(

1
−2

)

=

(

−1
1

)

f
(

ProjX [xk − ᾱβi∇f(xk)]
)

= 3 · 0 + 2 · 0 − 2 · (−1)2 = 2

f(x0) = 3 · 12 − 2 · 1 · (−2) + 2 · (−2)2 = 15

∇f(x0)T (ProjX [x0 −∇f(x0)] − x0) =
(

10 −10
)

(

−1
1

)

= −20.

Hence, the Armijo criterion is satisfied, as 2 ≤ 15 + 0.2 · (−20) = 11. Thus,
α0 = ᾱ = 1, and iterate x1 = ProjX [x0 −∇f(x0)] = (0,−1)T.

For the next iteration, we have ∇f(x1) = (2,−4)T. Hence,

x1 − α∇f(x1) =

(

0
−1

)

+

(

−2α
4α

)

=

(

−2α
−1 + 4α

)

.

As a result,

ProjX [x1 − α∇f(x1)] =

(

max{0,−2α}
min{−1,−1 + 4α}

)

=

(

0
−1

)

= x1, ∀α > 0,

and hence x1 is a stationary point (KKT point). The gradient projection algo-
rithm terminates because the termination criterion is met. Notice that the fact
that x1 is a stationary point can also be understood graphically, as −∇f(x1) lies
in the cone generated by the normal vectors of the two active constraints (x1 ≥ 0
and x2 ≤ −1).
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Finally, since f is convex (which can be verified by computing the Hessian) and
X is convex, the stationary point x1 is also optimal. This can be established via
Theorem 4.23 together with (4.18), or Theorem 5.49 in the text.


