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Question 1

(the simplex method)

a) We first rewrite the problem on standard form by introducing slack variables(2p)
s1 and s2. Consider the following linear program:

minimize − 5x1 − 4x2

subject to x1 + s1 = 7,

x1 − x2 + s2 = 8,

x1, x2, s1, s2 ≥ 0.

The starting basis is (s1, s2)
T. The reduced costs for the non-basic variables

x1 and x2 are c̃N = (−5,−4)T, meaning that x1 enters the basis. From the
minimum ratio test, we get that s1 leaves the basis.

Updating the basis we now have (x1, s2)
T in the basis. Calculating the

reduced costs, we obtain c̃N = (5,−4)T, meaning that x2 enters basis.
From the minimum ratio test we get that B−1Nx2 = (0,−2)T ≤ 0, mean-
ing that the problem is unbounded. The direction of unboundness is p =
(x1, x2, s1, s2) = (0, 1, 0, 2)T and z →∞ along the half-line l(µ) = (7, 0, 0, 8)T

+µ(0, 1, 0, 2)T, µ ≥ 0.

b) For example −x1 + x2 = 0 can be added to get a uniquely solvable linear(1p)
program. The optimal solution is then x∗ = (7, 7, 0, 0)T and z∗ = 63.

Question 2(3p)

(finiteness of the simplex algorithm)

Theorem 9.11 establishes the finite termination of the simplex method. The
termination criterion is equivalent to the optimality conditions for the LP.

Question 3

(LP duality)

a) Since q(µ) = min
i={1,... ,N}

cTxi +µT(Axi− b), the dual (maximization) prob-(1p)
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lem can be written as

max
µ

min
i∈{1,... ,N}

cTxi + µT(Axi − b)

subject to µ ≥ 0

This is equivalent to (2) in the problem statement.

b) The LP dual of (2) in the problem statement is(1p)

min
ν

N∑
i=1

νi(c
Txi)

subject to
N∑
i=1

νi(Ax
i − b) ≤ 0

N∑
i=1

νi = 1, ν ≥ 0

This problem is equivalent to

min
x

cTx

subject to Ax ≤ b

x ∈ conv
({
x | Cx ≤ d, x ∈ {0, 1}n

}) (a)

because x ∈ conv
({
x | Cx ≤ d, x ∈ {0, 1}n

})
if and only if x =

N∑
i=1

νix
i

for some ν ≥ 0,
N∑
i=1

νi = 1. Problem (2) in the statement is feasible

(e.g., µ = 0 and y = mini c
Txi). In addition, the feasibility of (1) in the

problem statement (i.e., the original integer program) implies that the dual
of (2) in the problem statement is feasible. Hence, linear programming
strong duality implies that the optimal objective values of (a) and (2) in
the problem statement are the same.

c) If x ∈ conv
({
x | Cx ≤ d, x ∈ {0, 1}n

})
then x satisfies Cx ≤ d. Hence,(1p)

the feasible set of (a) is included in the feasible set of the LP relaxation of
(1) in the problem statement. Hence, z∗LP ≤ z∗LD. Finally, the inequality
z∗LD ≤ z∗IP is due to weak duality.
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Question 4(3p)

(modelling)

The decision variables are:

bi, i = 1, . . . , 5 width of segment i

hi, i = 1, . . . , 5 height of segment i

Model

minimize l
5∑

i=1

bihi,

subject to
6Pl

b5h25
≤ σmax,

6P (2l)

b4h24
≤ σmax,

6P (3l)

b3h23
≤ σmax,

6P (4l)

b2h22
≤ σmax,

6P (5l)

b1h21
≤ σmax,

P l3

E
(

244

b1h31
+

148

b2h32
+

76

b3h33
+

28

b4h34
+

4

b5h35
) ≤ δmax,

hi
bi
≤ amax, i = 1, . . . , 5,

hi ≥ 0, bi ≥ 0, i = 1, . . . , 5.

Question 5

(true or false)

a) False: at a stationary point the Hessian may have a negative eigenvalue,(1p)
corresponding to an eigenvector p, resulting in pT∇2f(x)p < 0. This vector
hence is a descent direction.

b) True: this is Theorem 6.4.(1p)
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c) False: a global optimum is - by definition - also a local one.(1p)

Question 6(3p)

(optimality conditions)

The feasible set is nonempty and convex (three-dimensional box), z is C1 on the
feasible set and convex since its hessian P is positive semidefinite (P is symmetric
and the upper left 1-by-1 corner of P, 2-by-2 corner of P and P itself have positive
determinants. Then Sylvester’s criteria establishes the positive definiteness of
P. Eigenvalues of P can be found approximately, e.g. by bisection, instead to
establish the positive definiteness of P.).

Now we need to verify variational inequality to establish the global optimality of
x∗. The gradient of the objective function at x∗ is

∇z(x∗) = (−1, 0, 2)T.

Therefore the variational inequality is that

∇z(x∗)T(y − x) = −1(y1 − 1) + 2(y3 + 1) ≥ 0

for all y satisfying −1 ≥ yi ≥ 1, which is clearly true. So x∗ is a global optimum
of the problem considered (Theorem 4.23).

Question 7(3p)

(the basis of the SQP algorithm)

See equation (13.25) in the course book: the subproblem is equivalent to a second-
order approximation of the KKT conditions of the original problem.


