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: Introduction
Integer linear programs

Consider linear programs with integrality constraint:

minimize c¢clx
X

subject to Ax<b (1)
xeZ"

Often, consider special case of binary program

minimize  clx
subject to Ax<b (2)
x € {0,1}"
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Linear integer model Introduction
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When are integer models needed/helpful? IP modeling

Products or raw materials are indivisible
Logical constraints: “if A then B"; “Aor B”

v

v

Fixed costs

v

v

Combinatorics (sequencing, allocation)

v

On/off-decision to buy, invest, hire, generate electricity, ...
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Logical constraints IP modeling

0-1 binary decision variables can model logical decisions and relations:

v

0-1 binary variables: x = 1 means “true”; x = 0 means “false”.

v

If xtheny: x<y(x=1 = y=1).
> “XOR": x4y =1 (cannot be both “true” or both “false”).

v

Exactly one out of n must be true: x; +x +...+ x, = 1.

v

At least 3 out of 5 must be chosen: x; +xo + ...+ x5 > 3.

» and more...
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Disjoint feasible sets 1 e 2l

Integer decision variables can model disjoint feasible sets:

> For example, either 0 < x <1lor5 < x <8:

x>0
x<8
x<1+7y
X > 5y
y €{0,1}

> Variable x may only take the values 2, 45, 78 or 107

x =2y; + 45y, + 78y3 + 107y,
itytyst+ya=1
Y1,¥Y2,¥3,Y4 S {071}
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Fixed costs IP modeling

» Want to minimize an objective function with fixed cost:

f

0 H:X:O7 C
f(x) = .
cgt+ox ifo<x<M, (a]

where ¢; > 0 is a fixed cost incurred as long as x > 0.
» Modeling fixed cost using binary decision variable:
f(x,y) = c1y + ax
x>0
x < My
y €{0,1}
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A Sudoku example IP modeling

» Fill a square n x n grid
with numbers 1...n

» Every number must occur -
exactly once in every row, -
column and box -

CIIENIN
1
1
=1l
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1
1

1

1

1
N
~

» Huge number of -
reasonable configurations
of numbers -

1
1
1
=[O W
o

» To the right is a
supposedly very difficult
sudoku
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Sudoku cont. IP modeling

Want to let xj = 1 iff the solution to the puzzle puts number k at
row i, column j. Let aj be the given values of the puzzle we want

to solve for (i,j) € D.
minimize c¢cTx

n

subject tOZX,’jk =1, ik=1,...,n, (1)
j=1
n
> xip=1, jok=1,....n (2)
i=1

ms mp
Z Z Xjjk =1, s,p=1,....mk=1,....n, (3)

i=m(s—1)+1j=m(p—1)+1
n

> xip=1, ij=1,...,n, (4)
k=1
Xijk:]-v (i,_j)ED,k:a,'J', (5)
X,'jkE{O,].}, ij,k=1...,n. (6)
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Sudoku cont IP modeling

» (1)—(3) force every Solution:
number to be used once 0.02 s
in each row, column, and 208 MIP simplex iterations
box 5 branch-and-bound nodes

> (4) forces each position

to use exactly one S1112117151301614]9
number. 9|14 (13(|6[8|2|1]|7]5

» (5) forces our solution to 6] 7]5][4]9]1]/2]8]3
agree with the initial 154237 8[9]6
data. 316(91(/8|4|5(|7|2]1

. 21871169 5|3|4

> (b?za\r/;rlables must be A ABEEAEARREARAR:
4131852 |6|9|1]7

71916 3|18 4|52

» The objective function
lets me tune which
solution | want to get.
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Is integer optimization difficult? SemeleXity

> In a sense no. For binary programs (2) we could in principle
enumerate all 2" possible solutions.

» The more general case (1) is not as straightforward, but clever
finite enumerative schemes exist.

» However, integer programming is NP-hard, meaning that is
unlikely that a polynomial time algorithm exists. Computation
cost grows very rapidly with problem size.
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The combinatorial explosion EeER

Assign n persons to carry out n jobs # feasible solutions: n!
Assume that a feasible solution is evaluated in 107° seconds

n 2 5 8 10 100
n! 2 120 | 4.0-10* | 3.6-10° | 9.3- 101
[time] | 1078s [ 107 °s| 107*s | 1072 s | 10 yrs

Complete enumeration of all solutions is not an efficient algorithm!

An algorithm exists that solves this problem in time O(n%) o n3
n 2 5 8 10 100 1000
n’ 8 125 512 10° 10° | 10°

[time] | 1078s [ 107"s | 105|107 % |10 3s | 15
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Solution methods, overview e

> General solution method (can be expensive but general)

» Branch and bound method (divide-and-conquer)
» Cutting plane method (polyhedral approximation)
» Dynamic programming (divide-and-conquer)

» Algebraic method (e.g., Graver bases)

» Exact solution method for special cases (efficient but not general)

Shortest path problem
Minimum cut problem

Minimum spanning tree problem
Bipartite matching problem
Assignment problem and more...

vV vy vy VvYyy

> Approximate solution methods

» Usually more efficient; may or may not have error bounds
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Solution methods

Branch and bound method, |

> Divide feasible set F into Fi, Fp, ..., Fy.

min ¢’ x min ¢’ x

Instead of solving x solve for all i x
st. xeF, st. xeF.

» May need to recursively divide F;, i = 1,..., k. This is branching.

» Dividing F all the way to singletons — enumeration. Is it necessary?
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Solution methods

Branch and bound method, Il

Do we always need to divide F; further when considering

min ¢’ x

(P;): subproblem with F;: x ?
st. xeF;

We can stop further dividing F;, if one of the following holds:
> (P;) infeasible (i.e., F; = 0)

> Manage to solve (P;). Possibly update “the currently best”
objective value Zpest.

» Bounding: If we find b(P;), a lower bound of optimal objective
value of (P;), such that

b(PI) > Zpest-

BNB performance depends critically on quality of lower bound!
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Bounding, LP relaxation ST Mo s

How to check if F; = ()7 How to find lower bound b(P;)?

> Suppose (P;) and its LP relaxation take following form:

Zp = min cTx Z'p = min cTx
(P/) st. Ax>b (LP,) st. Ax>b
Dx>d Dx>d
X integer x real

> Since feasible set of (LP;) includes feasible set of (P;) (i.e, F;)

» (LP;) infeasible = (P;) infeasible
> Integer optimal solution to (LP;) = optimal solution to (P;)
» 25 < zjp. Thus, can set lower bound as b(P;) = zp.
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Bounding, Lagrangian dual relaxation Selutionlimethieds

» For IP (P;) with feasible set F;:

Zp = mXin cTx
st. Ax>b
Dx>d
X integer

» Can also obtain lower bound b(P;) by “dualizing” some constraints:

zZ'p = max q(p) th g(p) = min c"x+u’(b— Ax)
p wi x
st. >0 s.t. Dx > d, x integer

> Method is practical only when g(u) is easy to evaluate.

> z'p < 2’y < zp — lower bound by Lagrangian dual is always no
worse than LP relaxation bound. Inequalities can be strict.
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Solution methods

Branch and bound, illustration (1)

> An example linear integer programming problem:

X2

minimize x3 — 2x»
subject to —4x; +6x, <9
x1+x <4
x1,x2 >0

X1, X2 integer

> Dots are (integer) feasible points. Let S denote feasible set.
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Branch and bound, illustration (2) Eelutionlmethoss

> Fisdivided into F; = {x|x >3}NSand L ={x|x <2}NS.
» [ = (. No need to consider further.

> Fy: LP relaxation x> = (0.75,2), lower bound b(P;) = —3.25.

> Split Fot F3={x|x1 > 1,x <2}NS, FL ={x|x <0,x2 <2}NS.

X2

infeasible
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Solution methods

Branch and bound, illustration (3)

> Split Fo: F3={x|x1 > 1,x<2}NS, Fs={x|x1 <0,x <2}NS
» F3: LP relaxation x* = (1,2), integer valued! Update zyest = —3.

> Fy: LP relaxation x* = (0,1.5), b(Ps) = —3 > Zpest, SO remove Fy.

b(P4;) = —3  integer sol
> Zbest Zhest = —3
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Solution methods

Cutting plane

> LP relaxation has too large feasible set...

> Add cuts (i.e., valid inequalities satisfied by all IP feasible solutions
but not LP relaxation solutions) to tighten the relaxation.

» We need one in this example. Which one?......... answer is xp < 4.
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A fundamental theorem for MILP Solution methods

What is the tightest LP relaxation? How good is it?

(IP) min ¢’ x (R) min ¢’ x

st. seS, s.t. s € conv(S).

> (R) = best convex relaxation of (IP), but is (R) a linear program?

Let A be a rational matrix, b a rational vector, and let
S={x € Z"|Ax < b}. Then conv(S) is a polyhedron. Also, the
extreme points of conv(S) belong to S.

> (R) indeed LP relaxation of (IP)
> Solving (R) using simplex method also solves (IP)

> But, difficult to describe conv(S) conveniently
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Fundamental theorem for MILP, note Solution methods

Let A be a rational matrix, b a rational vector, and let
S={x € Z"|Ax < b}. Then conv(S) is a polyhedron. Also, the
extreme points of conv(S) belong to S.

Counterexample:
» S=PNZ"with P={x3 >0,% >0, < v2x}
> COHV(S) = {X]_ >0, >0,x < \/EX]_}

> conv(S) not closed = conv(S) not polyhedron

TMA947 — Lecture 12 Integer linear optimization



Cutting plane methods ST Mo s

Build better and better outer polyhedral approximations of conv(S).
For polyhedral (outer) approximation P’ : S = P' N Z", solve

- . . T

. minimize c¢'x
LP relaxation with P": x .
subject to se P'.

Let x'P solve LP relaxation. If x'P € S, then we are done.

Otherwise, generate a cut of the form vTx < d such that

vix®P > d but vix<d VxeS.

Update polyhedral approximation P! « PN {x | vIx < d}.
Solve updated LP relaxation with P*+1.
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0 Solution methods
Generating a cut

» Assume polyhedral approximation P’ = {x | Ax = b,x > 0}

» x'P € argmin ¢ T x with optimal basis B; Suppose x{* ¢ Z
xeP!

v

Consider j-th row of B7!Ax = B7lb <= x+ Y wvixx = xj!-P
k=m+1

v

XP ez, xP=0fork>m+1 = x*+ k;HMJXk > 17

v

On the other hand, forall x e PPNZ"=S

n
_ _ P
Ax=b = x;+ > VieXk = X
k=m+1
n
x>0 = x+ > kajxkng!‘P
k:m+1

xer = x+ Z | vk [xk < ij!-PJ
k=m+1
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Solution methods

Approximate solution methods

» Branch and bound and cutting plane methods provide exact optimal
solution, but sometimes we don't want to wait too long

> We can resort to approximate solution methods:

» LP relaxation might not provide integer optimal solutions, but
we can “round” them to integer feasible solutions.

» Lagrangian dual relaxation might not provide feasible solutions,
but from there we can construct suboptimal feasible solutions.

» Randomized algorithms (e.g., genetic algorithms, simulated
annealing) compare objective values at randomly chosen
feasible solutions — not much theoretical guarantee but
empirically they might find good suboptimal solutions.
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