TMA947/MMG621 NONLINEAR OPTIMISATION

Date: 17-04-12
Examiner: Michael Patriksson

Question 1

(linear programming)

$(2 \mathbf{p}) \quad$ a) Rewrite the problem into standard form by subtracting slack variables x_{5} and x_{6} from the left-hand side in the first and second constraint, respectively. If x_{2} and x_{3} are basic variables, the basic solution is

$$
\binom{x_{2}}{x_{3}}=\left(\begin{array}{cc}
3 & 1 \\
4 & -1
\end{array}\right)^{-1}\binom{6}{7}=\frac{1}{7}\binom{13}{3} \geq\binom{ 0}{0},
$$

and thus the basic solution is feasible.
Now we can check the reduced costs $\overline{\boldsymbol{c}}^{T}=\boldsymbol{c}_{N}^{T}-\boldsymbol{y}^{T} \boldsymbol{N}$, where
$\boldsymbol{y}=\boldsymbol{c}_{B}^{T} \boldsymbol{B}^{-1}=\left(\begin{array}{ll}40 & 4\end{array}\right)\left(\begin{array}{cc}3 & 1 \\ 4 & -1\end{array}\right)^{-1}=\binom{8}{4}$, for the non-basic variables:

$$
\begin{gathered}
\bar{c}_{1}=5-\left(\begin{array}{ll}
8 & 4
\end{array}\right)\binom{-\frac{1}{2}}{1}=5 \geq 0, \\
\bar{c}_{4}=-1-\left(\begin{array}{ll}
8 & 4
\end{array}\right)\binom{-1}{-1}=11 \geq 0, \\
\bar{c}_{5}=0-\left(\begin{array}{ll}
8 & 4
\end{array}\right)\binom{-1}{0}=8 \geq 0, \\
\bar{c}_{6}=0-\left(\begin{array}{ll}
8 & 4
\end{array}\right)\binom{0}{-1}=4 \geq 0 .
\end{gathered}
$$

All reduced costs are non-negative, and thus the basis is optimal.
(It is also possible to show this using LP duality and complementary slackness conditions.)
$(1 \mathbf{p})$ b) The dual solution and the reduced costs are not affected by a small enough perturbation in the right-hand side, and it is therefore enough to study how feasibility is affected.
Basic solution as a function of δ :

$$
\binom{x_{2}}{x_{3}}=\boldsymbol{B}^{-1}(\boldsymbol{b}-\delta)=\left(\begin{array}{cc}
3 & 1 \\
4 & -1
\end{array}\right)^{-1}\binom{6-\delta}{7-\delta}=\frac{1}{7}\binom{13}{3}-\frac{1}{7}\binom{2 \delta}{\delta} .
$$

Constraints on $\delta \geq 0$ for feasibility:

$$
\begin{aligned}
& 13-2 \delta \geq 0 \Longrightarrow \delta \leq \frac{13}{2} \\
& 3-\delta \geq 0 \Longrightarrow \delta \leq 3
\end{aligned}
$$

Thus, x_{2} and x_{3} are optimal basic variables if $0 \leq \delta \leq 3$.

(3p) Question 2

(the Separation Theorem)
See Theorem 4.29 in the course book.

(3p) Question 3

(Lagrangian duality)

Dual problem:

$$
\begin{array}{rl}
q^{*}=\max _{\boldsymbol{\mu} \geq \mathbf{0}} & q(\boldsymbol{\mu}), \\
\text { where } & q(\boldsymbol{\mu})=\min _{\boldsymbol{x} \in S} f(\boldsymbol{x})+\mu_{1} g_{1}(\boldsymbol{x})+\mu_{2} g_{2}(\boldsymbol{x}) .
\end{array}
$$

Since the optimal solution to the dual problem is given in the table, it is easy to calculate the dual function $q\left(\boldsymbol{\mu}^{k}\right)=f\left(\boldsymbol{x}^{k}\right)+\mu_{1}^{k} g_{1}\left(\boldsymbol{x}^{k}\right)+\mu_{2}^{k} g_{2}\left(\boldsymbol{x}^{k}\right)$.

Thus, the following calculations can be done:
$q\left(\boldsymbol{\mu}^{1}\right)=-3.0+0 \cdot 8.0+0 \cdot 12.0=-3.0$,
$q\left(\boldsymbol{\mu}^{2}\right)=1.0-3 \cdot 3.0+3 \cdot 5.0=7.0$,
$q\left(\boldsymbol{\mu}^{2}\right)=9.0+1.5 \cdot 2.0-6 \cdot 1.0=6.0$,
$q\left(\boldsymbol{\mu}^{4}\right)=12.0-2.25 \cdot 1.0-4.5 \cdot 0.5=7.5$,
$q\left(\boldsymbol{\mu}^{5}\right)=8.0+2 \cdot 0.0+3.75 \cdot 1.0=11.75$,
$q\left(\boldsymbol{\mu}^{6}\right)=12.25-2.16 \cdot 0.25-4 \cdot 0.25=10.71$.
Each $q\left(\boldsymbol{\mu}^{k}\right)$ gives an optimistic estimation of the optimal objective function value, f^{*}. Thus, the best optimistic estimation is $f^{*} \geq 11.75$.

Every feasible solution gives a pessimistic estimation of f^{*} :
\boldsymbol{x}^{4} feasible $\Longrightarrow f^{*} \leq 12$,
\boldsymbol{x}^{6} feasible $\Longrightarrow f^{*} \leq 12.25$.
Thus, $f^{*} \leq 12$.
Therefore, the best possible estimation is $11.75 \leq f^{*} \leq 12$.

(3p) Question 4

(modelling)

To simplify the notations, we change the two dimensions notations into one dimension. So change point (i, j) to $(i-1) \cdot J+j$, and $p_{\left(i_{1}, j_{1}\right)\left(i_{2}, j_{2}\right)}$ changes to $p_{\left(i_{1}-1\right) \cdot J+j_{1},\left(i_{2}-1\right) \cdot J+j_{2}}$.

Sets:
$\mathcal{M}:=\{i \mid i \in\{1, \ldots, I \cdot J\}\}$, the set of possible points,
$\mathcal{N}:=\{(i, j) \mid$ all pairs of points (i, j) where $i \in \mathcal{M}$ is an adjacent point of $j \in \mathcal{M}\}$.
The decision variables are:

$$
x_{i, j}= \begin{cases}1 & \text { part of the optimal route goes from } i \text { to } j, \\ 0 & \text { otherwise },\end{cases}
$$

where $\{i, j\} \in \mathcal{N}$.
Model:

$$
\begin{aligned}
& \operatorname{maximize} \quad \prod_{(i, j) \in N}\left(1-p_{i, j} x_{i, j}\right), \\
& \sum_{j \mid(i, j) \in N} x_{i, j}=\sum_{k \mid(k, i) \in N} x_{k, i} \quad i \in \mathcal{M} \backslash\{1, I \cdot J\}, \\
& \sum_{j \mid(1, j) \in N} x_{1, j}=\sum_{k \mid(k, 1) \in N} x_{k, 1}+1, \\
& \sum_{j \mid(I \cdot J, j) \in N} x_{I \cdot J, j}=\sum_{k \mid(k, I \cdot J) \in N} x_{k, I \cdot J}-1, \\
& \sum_{(i, j) \in N} x_{i, j} \leq S, \\
& x_{i, j} \in\{0,1\}
\end{aligned}
$$

EXAM SOLUTION
TMA947/MMG621 - NONLINEAR OPTIMISATION

Question 5

(necessary local and sufficient global optimality conditions)
(1p) a) See Proposition 4.22 in course book.
$(2 \mathbf{p}) \quad$ b) See Theorem 4.23 in the course book.

Question 6

(true or false)
(1p) a) False. Let $f(x)=-x^{2}$. At the point $\bar{x}=0$, all feasible directions $p \neq 0$ are descent directions. However, $f^{\prime}(\bar{x})=0$ and thus $f^{\prime}(\bar{x}) p=0$. Therefore, the claim is false.
(It is however sufficient, i.e. if $\nabla f(\boldsymbol{x})^{\mathrm{T}} \boldsymbol{p}<0$, then \boldsymbol{p} is a descent direction with respect to f at \boldsymbol{x}.)
(1p) b) False. The problem is feasible but may have an unbounded solution.
$(\mathbf{1 p}) \quad$ c) False. Consider the function g where $g(x)=4-x^{2}$ and the two points $x^{1}=-2$ and $x^{2}=3$ which belong to the set $S=\{x \in \mathbb{R} \mid g(x) \leq 0\}$. By Definitions 3.39 and $3.40, g$ is concave. However, the point $\frac{1}{2} x^{1}+\frac{1}{2} x^{2}=\frac{1}{2} \notin S$. Hence, by Definition 3.1, the set S is not convex.

Question 7

```
(the Karush-Kuhn-Tucker conditions)
```

(2p) a) First, rewrite the problem to the following form:

$$
\begin{aligned}
& \operatorname{minimize} \quad f(\boldsymbol{x}):=x_{1}^{2}-x_{1} \\
& 2-x_{1} \leq 0 \\
& \text { subject to } \\
& \left(x_{1}-3\right)^{2}-x_{2}-2 \leq 0 \\
& 1-x_{1}+x_{2} \leq 0
\end{aligned}
$$

Let:

$$
\begin{aligned}
& g_{1}(\boldsymbol{x})=2-x_{1}, \\
& g_{2}(\boldsymbol{x})=\left(x_{1}-3\right)^{2}-x_{2}, \\
& g_{3}(\boldsymbol{x})=1-x_{1}+x_{2} .
\end{aligned}
$$

The KKT conditions are:
$\nabla f(\boldsymbol{x})+\sum_{i=1}^{3} \mu_{i} \nabla g_{i}(\boldsymbol{x})=\binom{2 x_{1}-1}{0}+\mu_{1}\binom{-1}{0}+\mu_{2}\binom{2 x_{1}-6}{-1}+\mu_{3}\binom{-1}{1}=\binom{0}{0}$,
$\mu_{1}, \mu_{2}, \mu_{3} \geq 0$,
$\mu_{i} g_{i}(\boldsymbol{x})=0, \quad i=1,2,3$,
$g_{i}(\boldsymbol{x}) \leq 0, \quad i=1,2,3$.
The following cases of active constraints are possible:

- Let g_{1} be active. Solving the KKT conditions gives $x_{1}=2$, $-1<x_{2}<1, \mu_{1}=3, \mu_{2}=0$, and $\mu_{3}=0$.
- Let g_{1} and g_{2} be active. Solving the KKT conditions gives $x_{1}=2$, $x_{2}=-1, \mu_{1}=3, \mu_{2}=0, \mu_{3}=0$.
- Let g_{2} be active. The KKT conditions do not give any points.
- Let g_{2} and g_{3} be active. The KKT conditions do not give any points.
- Let g_{3} be active. The KKT conditions do not give any points.
- Let $g_{!}$and g_{3} be active. Solving the KKT conditions gives $x_{1}=2$, $x_{2}=1, \mu_{1}=3, \mu_{2}=0, \mu_{3}=0$.
- Let no constraints be active. The KKT conditions do not give any points.

Thus, the feasible points fulfilling the KKT conditions are $\boldsymbol{x}=\binom{2}{a}$, where $-1 \leq a \leq 1$.

EXAM SOLUTION

TMA947/MMG621 - NONLINEAR OPTIMISATION
$(1 \mathbf{p}) \quad$ b) The objective function f and the constraint functions g_{i} are convex. Therefore the KKT conditions are sufficient for global optimality, and thus all KKT points are optimal.

