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Question 1

(linear programming)

a) Rewrite the problem into standard form by subtracting slack variables x5(2p)
and x6 from the left-hand side in the first and second constraint, respec-
tively. If x2 and x3 are basic variables, the basic solution is(

x2
x3

)
=

(
3 1
4 −1

)−1 (
6
7

)
=

1

7

(
13
3

)
≥
(

0
0

)
,

and thus the basic solution is feasible.

Now we can check the reduced costs c̄T = cTN − yTN , where

y = cTBB
−1 =

(
40 4

)(3 1
4 −1

)−1
=

(
8
4

)
, for the non-basic variables:

c̄1 = 5−
(
8 4

)(−1
2

1

)
= 5 ≥ 0,

c̄4 = −1−
(
8 4

)(−1
−1

)
= 11 ≥ 0,

c̄5 = 0−
(
8 4

)(−1
0

)
= 8 ≥ 0,

c̄6 = 0−
(
8 4

)( 0
−1

)
= 4 ≥ 0.

All reduced costs are non-negative, and thus the basis is optimal.

(It is also possible to show this using LP duality and complementary slack-
ness conditions.)

b) The dual solution and the reduced costs are not affected by a small enough(1p)
perturbation in the right-hand side, and it is therefore enough to study how
feasibility is affected.

Basic solution as a function of δ:(
x2
x3

)
= B−1(b− δ) =

(
3 1
4 −1

)−1 (
6− δ
7− δ

)
=

1

7

(
13
3

)
− 1

7

(
2δ
δ

)
.

Constraints on δ ≥ 0 for feasibility:

13− 2δ ≥ 0 =⇒ δ ≤ 13
2

,
3− δ ≥ 0 =⇒ δ ≤ 3.

Thus, x2 and x3 are optimal basic variables if 0 ≤ δ ≤ 3.
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Question 2(3p)

(the Separation Theorem)

See Theorem 4.29 in the course book.

Question 3(3p)

(Lagrangian duality)

Dual problem:

q∗ = max
µ≥0

q(µ),

where q(µ) = min
x∈S

f(x) + µ1g1(x) + µ2g2(x).

Since the optimal solution to the dual problem is given in the table, it is easy to
calculate the dual function q(µk) = f(xk) + µk

1g1(x
k) + µk

2g2(x
k).

Thus, the following calculations can be done:

q(µ1) = −3.0 + 0 · 8.0 + 0 · 12.0 = −3.0,
q(µ2) = 1.0− 3 · 3.0 + 3 · 5.0 = 7.0,
q(µ2) = 9.0 + 1.5 · 2.0− 6 · 1.0 = 6.0,
q(µ4) = 12.0− 2.25 · 1.0− 4.5 · 0.5 = 7.5,
q(µ5) = 8.0 + 2 · 0.0 + 3.75 · 1.0 = 11.75,
q(µ6) = 12.25− 2.16 · 0.25− 4 · 0.25 = 10.71.

Each q(µk) gives an optimistic estimation of the optimal objective function value,
f ∗. Thus, the best optimistic estimation is f ∗ ≥ 11.75.

Every feasible solution gives a pessimistic estimation of f ∗:

x4 feasible =⇒ f ∗ ≤ 12,
x6 feasible =⇒ f ∗ ≤ 12.25.

Thus, f ∗ ≤ 12.

Therefore, the best possible estimation is 11.75 ≤ f ∗ ≤ 12.
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Question 4(3p)

(modelling)

To simplify the notations, we change the two dimensions notations into one di-
mension. So change point (i, j) to (i − 1) · J + j, and p(i1,j1)(i2,j2) changes to
p(i1−1)·J+j1,(i2−1)·J+j2 .

Sets:
M := {i|i ∈ {1, ..., I · J}}, the set of possible points,
N := {(i, j)| all pairs of points (i, j) where i ∈ M is an adjacent point of j ∈M}.

The decision variables are:

xi,j =

{
1 part of the optimal route goes from i to j,
0 otherwise,

where {i, j} ∈N .

Model:

maximize
∏

(i,j)∈N
(1− pi,jxi,j),

subject to
∑

j|(i,j)∈N
xi,j =

∑
k|(k,i)∈N

xk,i i ∈M\{1, I · J},

∑
j|(1,j)∈N

x1,j =
∑

k|(k,1)∈N
xk,1 + 1,

∑
j|(I·J,j)∈N

xI·J,j =
∑

k|(k,I·J)∈N
xk,I·J − 1,

∑
(i,j)∈N

xi,j ≤ S,

xi,j ∈ {0, 1} (i, j) ∈ N .
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Question 5

(necessary local and sufficient global optimality conditions)

a) See Proposition 4.22 in course book.(1p)

b) See Theorem 4.23 in the course book.(2p)

Question 6

(true or false)

a) False. Let f(x) = −x2. At the point x̄ = 0, all feasible directions p 6= 0 are(1p)
descent directions. However, f ′(x̄) = 0 and thus f ′(x̄)p = 0. Therefore, the
claim is false.

(It is however sufficient, i.e. if ∇f(x)Tp < 0, then p is a descent direction
with respect to f at x.)

b) False. The problem is feasible but may have an unbounded solution.(1p)

c) False. Consider the function g where g(x) = 4 − x2 and the two points(1p)
x1 = −2 and x2 = 3 which belong to the set S = {x ∈ R | g(x) ≤ 0}. By
Definitions 3.39 and 3.40, g is concave. However, the point
1
2
x1 + 1

2
x2 = 1

2
/∈ S. Hence, by Definition 3.1, the set S is not convex.
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Question 7

(the Karush–Kuhn–Tucker conditions)

a) First, rewrite the problem to the following form:(2p)

minimize f(x) := x21 − x1,
subject to 2− x1 ≤ 0,

(x1 − 3)2 − x2 − 2 ≤ 0,
1− x1 + x2 ≤ 0.

Let:

g1(x) = 2− x1,
g2(x) = (x1 − 3)2 − x2,
g3(x) = 1− x1 + x2.

The KKT conditions are:

∇f(x)+
3∑

i=1

µi∇gi(x) =

(
2x1 − 1

0

)
+µ1

(
−1
0

)
+µ2

(
2x1 − 6
−1

)
+µ3

(
−1
1

)
=

(
0
0

)
,

µ1, µ2, µ3 ≥ 0,

µigi(x) = 0, i = 1, 2, 3,

gi(x) ≤ 0, i = 1, 2, 3.

The following cases of active constraints are possible:

• Let g1 be active. Solving the KKT conditions gives x1 = 2,
−1 < x2 < 1, µ1 = 3, µ2 = 0, and µ3 = 0.

• Let g1 and g2 be active. Solving the KKT conditions gives x1 = 2,
x2 = −1, µ1 = 3, µ2 = 0, µ3 = 0.

• Let g2 be active. The KKT conditions do not give any points.

• Let g2 and g3 be active. The KKT conditions do not give any points.

• Let g3 be active. The KKT conditions do not give any points.

• Let g! and g3 be active. Solving the KKT conditions gives x1 = 2,
x2 = 1, µ1 = 3, µ2 = 0, µ3 = 0.

• Let no constraints be active. The KKT conditions do not give any
points.

Thus, the feasible points fulfilling the KKT conditions are x =

(
2
a

)
, where

−1 ≤ a ≤ 1.
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b) The objective function f and the constraint functions gi are convex. There-(1p)
fore the KKT conditions are sufficient for global optimality, and thus all
KKT points are optimal.


