TMA947/MMG621 NONLINEAR OPTIMISATION

Date: 18-01-09
Examiner: Michael Patriksson

Question 1

(the simplex method)
(1p) a) Rewrite the problem into standard form by letting $x_{1}:=x_{1}^{+}-x_{1}^{-}$and adding/subtracting slack variables s_{1} and s_{2} to the left-hand side in the first and second constraint, respectively. Moreover, let $z:=-z$ to get the problem on minimization form. Thus, we get the following linear program:

$$
\begin{aligned}
\operatorname{minimize} z= & x_{1}^{+}-x_{1}^{-}+2 x_{2}, \\
-x_{1}^{+}+x_{1}^{-}+ & x_{2}+s_{1} \\
\text { subject to } & =5, \\
x_{2} & -s_{2}=2, \\
& x_{1}^{+}, \quad x_{1}^{-}, \quad x_{2}, \quad s_{1}, \quad s_{2} \geq 0 .
\end{aligned}
$$

$(2 \mathbf{p}) \quad$ b) Introducing the artificial variable a, phase I gives the problem

$$
\begin{aligned}
& \operatorname{minimize} \quad w=a, \\
& \text { subject to } \\
& \quad-x_{1}^{+}+x_{1}^{-}+x_{2}+s_{1} \\
& \\
& \\
& \\
& x_{1}^{+}, \quad x_{1}^{-}, \quad x_{2}, \quad s_{1}, \quad s_{2}, \quad a \geq 0, \\
&
\end{aligned}
$$

Using the starting basis $\left(s_{1}, a\right)^{T}$ gives
$\boldsymbol{B}=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right), \boldsymbol{N}=\left(\begin{array}{cccc}-1 & 1 & 1 & 0 \\ 0 & 0 & 1 & -1\end{array}\right), \boldsymbol{x}_{B}=\binom{5}{2}, \boldsymbol{c}_{B}=\binom{0}{1}, \boldsymbol{c}_{N}=\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right)$.
The reduced costs, $\overline{\boldsymbol{c}}_{N}^{T}=\boldsymbol{c}_{N}^{T}-\boldsymbol{c}_{B}^{T} \boldsymbol{B}^{-1} \boldsymbol{N}$, for this basis is $\overline{\boldsymbol{c}}_{N}^{T}=\left(\begin{array}{llll}0 & 0 & -1 & 1\end{array}\right)$, which means that x_{2} enters the basis. The minimum ratio test implies that a leaves.
Thus, we move on to phase II using the basis $\left(s_{1}, x_{2}\right)^{T}$, and

$$
\boldsymbol{B}=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right), \boldsymbol{N}=\left(\begin{array}{ccc}
-1 & 1 & 0 \\
0 & 0 & -1
\end{array}\right), \boldsymbol{x}_{B}=\binom{3}{2}, \boldsymbol{c}_{B}=\binom{0}{2}, \boldsymbol{c}_{N}=\left(\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right)
$$

The new reduced costs are $\overline{\boldsymbol{c}}_{N}^{T}=\left(\begin{array}{lll}1 & -1 & 2\end{array}\right)$ which means that x_{1}^{-}enters the basis. The minimum ratio test implies that s_{1} leaves.

Updating the basis, now with $\left(x_{1}^{-}, x_{2}\right)^{T}$, gives

$$
\boldsymbol{B}=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right), \boldsymbol{N}=\left(\begin{array}{ccc}
-1 & 1 & 0 \\
0 & 0 & -1
\end{array}\right), \boldsymbol{x}_{B}=\binom{3}{2}, \boldsymbol{c}_{B}=\binom{-1}{2}, \boldsymbol{c}_{N}=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) .
$$

The new reduced costs are $\overline{\boldsymbol{c}}_{N}^{T}=\left(\begin{array}{lll}0 & 1 & 3\end{array}\right)$ which means that the current basis is optimal. The optimal solution is thus $\boldsymbol{x}^{*}=\left(\begin{array}{lllll}x_{1}^{+} & x_{1}^{-} & x_{2} & s_{1} & s_{2}\end{array}\right)^{T}=\left(\begin{array}{lllll}0 & 3 & 2 & 0 & 0\end{array}\right)^{T}$ with optimal objective function value $z^{*}=1$.

Question 2

(Lagrangian duality and convexity)
(2p) a) We create the Lagrangian function

$$
\begin{equation*}
L(\boldsymbol{x}, \mu)=\left(x_{1}-1\right)^{2}-2 x_{2}+\mu\left(2 x_{2}-x_{1}-2\right)=\left(x_{1}^{2}-2 x_{1}-\mu x_{1}\right)+2(\mu-1) x_{2}+1-2 \mu . \tag{1}
\end{equation*}
$$

The dual function then is

$$
\begin{equation*}
q(\mu)=\min _{\boldsymbol{x} \geq 0} L(x, \mu)=1-2 \mu+\min _{x_{1} \geq 0}\left(x_{1}^{2}-2 x_{1}-\mu x_{1}\right)+\min _{x_{2} \geq 0} 2(\mu-1) x_{2} . \tag{2}
\end{equation*}
$$

At $\mu=0$, since the objective function coefficient for x_{2} is negative, letting $x_{2} \rightarrow \infty$ yields unbounded solutions to the Lagrangian subproblem. Thus $q(0)=-\infty$. At $\mu=2$, to minimize the convex quadratic problem in x_{1} we let $x_{1}=1+\mu / 2=2$, and $x_{2}=0$. Thus $q(2)=-7$. By weak duality it follows that $q(2) \leq f^{*}$. To find an upper bound, choose any feasible point, e.g. $\left(x_{1}, x_{2}\right)=(1,1)$, which has objective value -2 . Hence $f^{*} \in[-7,-2]$.
(1p) b) See course book.

Question 3

(Karush-Kuhn-Tucker)

(1p) a) Let $g_{1}(\boldsymbol{x}):=x_{1}+x_{2}-5, g_{2}(\boldsymbol{x}):=-x_{1}$ and $g_{3}(\boldsymbol{x}):=-x_{2}$, with respective gradients $(1,1)^{T},(-1,0)^{T}$ and $(0,-1)^{T}$.
Moreover, $\nabla f=\left(-2\left(x_{1}-3\right),-2\left(x_{2}-1\right)\right)^{T}$. The KKT-conditions are as follows:

$$
\begin{aligned}
& -2\left(x_{1}-3\right)+\mu_{1}-\mu_{2}=0, \\
& -2\left(x_{2}-1\right)+\mu_{1}-\mu_{3}=0, \\
& \mu_{1}, \mu_{2}, \mu_{3} \geq 0, \\
& x_{1}+x_{2}-5 \leq 0, \\
& -x_{1} \leq 0, \\
& -x_{2} \leq 0, \\
& \mu_{1}\left(x_{1}+x_{2}-5\right)=0, \\
& \mu_{2}\left(-x_{1}\right)=0, \\
& \mu_{3}\left(-x_{2}\right)=0 .
\end{aligned}
$$

Since the functions $g_{i}, i=1,2,3$, are convex and there exists an inner point (for example $(1,1)^{T}$), the problem satisfies Slater CQ. Thus, the KKTconditions are necessary.
$(\mathbf{2 p}) \quad$ b) By visually analyzing the figure, we can see that there is a total of 7 KKTpoints. To find all of them analytically, let different combinations of constraints be active and solve for \boldsymbol{x} in the KKT-conditions.
For instance, let g_{1} be the only active constraint. Then, $x_{1}+x_{2}-5=0$ and $\mu_{2}=\mu_{3}=0$. This, together with the first two KKT-conditions, gives that $x_{1}=\frac{7}{2}$ and $x_{2}=\frac{3}{2}$. Thus, we get the KKT-point $\boldsymbol{x}^{1}=\left(\frac{7}{2}, \frac{3}{2}\right)^{T}$.
Similar calculations for other active constraints gives the KKT-points
$\boldsymbol{x}^{2}=(3,0)^{T}, \boldsymbol{x}^{3}=(0,1)^{T}, \boldsymbol{x}^{4}=(5,0)^{T}, \boldsymbol{x}^{5}=(0,5)^{T}, \boldsymbol{x}^{6}=(0,0)^{T}$ and $\boldsymbol{x}^{7}=(3,1)^{T}$. Note that \boldsymbol{x}^{7} is found when there are no active constraints, i.e. an inner point where $\nabla f(\boldsymbol{x})=0$.

Since the KKT-conditions are necessary, the global optimum must be in at least one KKT-point. Trying all of them gives $f^{*}=-25$ for $\boldsymbol{x}^{*}=\boldsymbol{x}^{5}=(0,5)^{T}$.

Question 4

(unconstrained optimization)

We have that

$$
\nabla f(\boldsymbol{x})=\left(2 x_{1}+2 x_{2}+4,2 x_{1}-4 x_{2}\right)^{\mathrm{T}}, \quad \nabla^{2} f(\boldsymbol{x})=\left(\begin{array}{cc}
2 & 2 \tag{1}\\
2 & -4
\end{array}\right)
$$

a) For the steepest descent method:

$$
\begin{equation*}
\boldsymbol{p}=-\nabla f(\overline{\boldsymbol{x}})=(-4,0)^{\mathrm{T}} \tag{2}
\end{equation*}
$$

b) For Newtons method:

$$
\begin{equation*}
\boldsymbol{p}=-\left[\nabla^{2} f(\overline{\boldsymbol{x}})\right]^{-1} \nabla f(\overline{\boldsymbol{x}})=(-4 / 3,-2 / 3)^{\mathrm{T}} \tag{3}
\end{equation*}
$$

c) For Newtons method with Levenberg-Marquardt modification:

$$
\begin{equation*}
\boldsymbol{p}=-\left[\nabla^{2} f(\overline{\boldsymbol{x}})+\gamma I\right]^{-1} \nabla f(\overline{\boldsymbol{x}})=(-4 / 9,2 / 9)^{\mathrm{T}} \tag{4}
\end{equation*}
$$

The methods a) and c) always finds descent directions (if γ is chosen large enough).

(3p) Question 5

(modelling)
A suggested integer programming formulation is as follows:

Sets:
$\mathcal{L}:=\{i \mid i \in\{1, \ldots, 7\}\}$, the set of wind turbines,
$\mathcal{M}:=\{j \mid j \in\{M o n, \ldots, F r i\}\}$, the set of different days,
$\mathcal{N}:=\{k \mid k \in\{1,2\}\}$, the set of two maintenance teams.

To simplify the problem, we add a parameter $c_{i j} i \in \mathcal{L}, j \in \mathcal{M}$, are the maintenance cost for different wind turbines at each day.

The decision variables are:
$x_{i, j, k}= \begin{cases}1 & \text { if maintenance team } k \in \mathcal{N} \text { maintain wind turbine } i \in \mathcal{L} \text { at day } j \in \mathcal{M}, \\ 0 & \text { otherwise } .\end{cases}$

Model:

$$
\begin{array}{rr}
\operatorname{minimize} \quad \sum_{i \in \mathcal{L}} \sum_{j \in \mathcal{M}} \sum_{k \in \mathcal{N}} c_{j i} x_{i j k}, & \quad i \in \mathcal{L}, \\
\text { subject to } \quad \sum_{j \in \mathcal{M}} \sum_{k \in \mathcal{N}} x_{i j k}=1 & k \in \mathcal{N}, j \in \mathcal{M}, \\
\sum_{i \in \mathcal{L}} x_{i j k} \leq 1 \\
x_{i j k} \in\{0,1\} \quad i \in \mathcal{L}, j \in \mathcal{M}, k \in \mathcal{N} .
\end{array}
$$

Question 6

(true or false)
(1p) a) The claim is false. The functions $h_{i}, i=1, \ldots, k$ defining the equality constraints must be affine.
(1p) b) The claim is true.
Choose arbitrary two points, \boldsymbol{x}^{1} and \boldsymbol{x}^{2}, an $\alpha \in[0,1]$,

$$
\begin{aligned}
& \alpha f\left(\boldsymbol{x}^{1}\right)+(1-\alpha) f\left(\boldsymbol{x}^{2}\right) \\
= & \alpha \ln \sum_{j=1}^{n} e^{a_{j} x_{j}^{1}}+(1-\alpha) \ln \sum_{j=1}^{n} e^{a_{j} x_{j}^{2}} \\
= & \ln \sum_{j=1}^{n} e^{a_{j} x_{j}^{1} \alpha}+\ln \sum_{j=1}^{n} e^{a_{j} x_{j}^{2}(1-\alpha)} \\
= & \ln \sum_{j=1}^{n} e^{a_{j} x_{j}^{1} \alpha} \sum_{j=1}^{n} e^{a_{j} x_{j}^{2}(1-\alpha)} \quad \text { since } e^{x}>0, \forall x \in \mathbb{R} \\
\geq & \ln \sum_{j=1}^{n} e^{a_{j} x_{j}^{1} \alpha} e^{a_{j} x_{j}^{2}(1-\alpha)} \\
= & \ln \sum_{j=1}^{n} e^{a_{j}\left(x_{j}^{1} \alpha+x_{j}^{2}(1-\alpha)\right)} \\
= & f\left(\alpha \boldsymbol{x}^{1}+(1-\alpha) \boldsymbol{x}^{2}\right)
\end{aligned}
$$

By definition, f is a convex function.
$(1 \mathbf{p}) \quad$ c) The claim is false. Consider the linear program to minimize x_{2} subject to the constraints $0 \leq x_{j} \leq 4, j=1,2$, and the additional constraint that $x_{1}+x_{2} \leq 2$. This problem has the optimal solution set $X^{*}=\left\{x \in \mathbb{R}^{2} \mid x_{1} \in\right.$ $\left.[0,2] ; x_{2}=0\right\}$. At the optimal solution $x^{*}=(1,0)^{\mathrm{T}}, x_{1}+x_{2}<2$ holds. Believing that this means that the constraint $x_{1}+x_{2} \leq 2$ therefore is redundant results, however, in a grave mistake, as the new problem has the optimal set $X_{\text {new }}^{*}=\left\{x \in \mathbb{R}^{2} \mid x_{1} \in[0,4] ; x_{2}=0\right\}$.

Question 7

(LP duality)

See Theorem 10.6 in the course book.

