Chalmers/GU Mathematics EXAM SOLUTION

TMA947/MMG621 NONLINEAR OPTIMISATION

Date:18-01-09Examiner:Michael Patriksson

Question 1

(the simplex method)

(1p) a) Rewrite the problem into standard form by letting $x_1 := x_1^+ - x_1^-$ and adding/subtracting slack variables s_1 and s_2 to the left-hand side in the first and second constraint, respectively. Moreover, let z := -z to get the problem on minimization form. Thus, we get the following linear program:

minimize
$$z = x_1^+ - x_1^- + 2x_2,$$

subject to $-x_1^+ + x_1^- + x_2 + s_1 = 5,$
 $x_2 - s_2 = 2,$
 $x_1^+, x_1^-, x_2, s_1, s_2 \ge 0.$

(2p) b) Introducing the artificial variable a, phase I gives the problem

minimize
$$w = a$$
,
subject to $-x_1^+ + x_1^- + x_2 + s_1 = 5$,
 $x_2 - s_2 + a = 2$,
 $x_1^+, x_1^-, x_2, s_1, s_2, a \ge 0$.

Using the starting basis $(s_1, a)^T$ gives

$$\boldsymbol{B} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \boldsymbol{N} = \begin{pmatrix} -1 & 1 & 1 & 0 \\ 0 & 0 & 1 & -1 \end{pmatrix}, \boldsymbol{x}_B = \begin{pmatrix} 5 \\ 2 \end{pmatrix}, \boldsymbol{c}_B = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \boldsymbol{c}_N = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

The reduced costs, $\bar{\boldsymbol{c}}_N^T = \boldsymbol{c}_N^T - \boldsymbol{c}_B^T \boldsymbol{B}^{-1} \boldsymbol{N}$, for this basis is $\bar{\boldsymbol{c}}_N^T = \begin{pmatrix} 0 & 0 & -1 & 1 \end{pmatrix}$, which means that x_2 enters the basis. The minimum ratio test implies that a leaves.

Thus, we move on to phase II using the basis $(s_1, x_2)^T$, and

$$\boldsymbol{B} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \boldsymbol{N} = \begin{pmatrix} -1 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix}, \boldsymbol{x}_B = \begin{pmatrix} 3 \\ 2 \end{pmatrix}, \boldsymbol{c}_B = \begin{pmatrix} 0 \\ 2 \end{pmatrix}, \boldsymbol{c}_N = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}.$$

The new reduced costs are $\bar{\mathbf{c}}_N^T = \begin{pmatrix} 1 & -1 & 2 \end{pmatrix}$ which means that x_1^- enters the basis. The minimum ratio test implies that s_1 leaves.

Updating the basis, now with $(x_1^-, x_2)^T$, gives

$$oldsymbol{B} = egin{pmatrix} 1 & 1 \ 0 & 1 \end{pmatrix}, oldsymbol{N} = egin{pmatrix} -1 & 1 & 0 \ 0 & 0 & -1 \end{pmatrix}, oldsymbol{x}_B = egin{pmatrix} 3 \ 2 \end{pmatrix}, oldsymbol{c}_B = egin{pmatrix} -1 \ 2 \end{pmatrix}, oldsymbol{c}_N = egin{pmatrix} 1 \ 0 \ 0 \end{pmatrix}.$$

The new reduced costs are $\bar{\boldsymbol{c}}_N^T = \begin{pmatrix} 0 & 1 & 3 \end{pmatrix}$ which means that the current basis is optimal. The optimal solution is thus $\boldsymbol{x}^* = \begin{pmatrix} x_1^+ & x_1^- & x_2 & s_1 & s_2 \end{pmatrix}^T = \begin{pmatrix} 0 & 3 & 2 & 0 & 0 \end{pmatrix}^T$ with optimal objective function value $z^* = 1$.

Question 2

(Lagrangian duality and convexity)

(2p) a) We create the Lagrangian function

$$L(\boldsymbol{x},\mu) = (x_1-1)^2 - 2x_2 + \mu(2x_2 - x_1 - 2) = (x_1^2 - 2x_1 - \mu x_1) + 2(\mu - 1)x_2 + 1 - 2\mu$$
(1)

The dual function then is

$$q(\mu) = \min_{\boldsymbol{x} \ge 0} L(x,\mu) = 1 - 2\mu + \min_{x_1 \ge 0} \left(x_1^2 - 2x_1 - \mu x_1 \right) + \min_{x_2 \ge 0} 2(\mu - 1)x_2.$$
(2)

At $\mu = 0$, since the objective function coefficient for x_2 is negative, letting $x_2 \to \infty$ yields unbounded solutions to the Lagrangian subproblem. Thus $q(0) = -\infty$. At $\mu = 2$, to minimize the convex quadratic problem in x_1 we let $x_1 = 1 + \mu/2 = 2$, and $x_2 = 0$. Thus q(2) = -7. By weak duality it follows that $q(2) \leq f^*$. To find an upper bound, choose any feasible point, e.g. $(x_1, x_2) = (1, 1)$, which has objective value -2. Hence $f^* \in [-7, -2]$.

(1p) b) See course book.

Question 3

(Karush-Kuhn-Tucker)

(1p) a) Let $g_1(\boldsymbol{x}) := x_1 + x_2 - 5$, $g_2(\boldsymbol{x}) := -x_1$ and $g_3(\boldsymbol{x}) := -x_2$, with respective gradients $(1, 1)^T$, $(-1, 0)^T$ and $(0, -1)^T$. Moreover, $\nabla f = (-2(x_1 - 3), -2(x_2 - 1))^T$. The KKT-conditions are as follows:

> $-2(x_1 - 3) + \mu_1 - \mu_2 = 0,$ $-2(x_2 - 1) + \mu_1 - \mu_3 = 0,$ $\mu_1, \mu_2, \mu_3 \ge 0,$ $x_1 + x_2 - 5 \le 0,$ $-x_1 \le 0,$ $-x_2 \le 0,$ $\mu_1(x_1 + x_2 - 5) = 0,$ $\mu_2(-x_1) = 0,$ $\mu_3(-x_2) = 0.$

Since the functions g_i , i = 1, 2, 3, are convex and there exists an inner point (for example $(1, 1)^T$), the problem satisfies Slater CQ. Thus, the KKT-conditions are necessary.

(2p) b) By visually analyzing the figure, we can see that there is a total of 7 KKT-points. To find all of them analytically, let different combinations of constraints be active and solve for *x* in the KKT-conditions.

For instance, let g_1 be the only active constraint. Then, $x_1 + x_2 - 5 = 0$ and $\mu_2 = \mu_3 = 0$. This, together with the first two KKT-conditions, gives that $x_1 = \frac{7}{2}$ and $x_2 = \frac{3}{2}$. Thus, we get the KKT-point $\boldsymbol{x}^1 = (\frac{7}{2}, \frac{3}{2})^T$. Similar calculations for other active constraints gives the KKT-points

 $\boldsymbol{x}^2 = (3,0)^T$, $\boldsymbol{x}^3 = (0,1)^T$, $\boldsymbol{x}^4 = (5,0)^T$, $\boldsymbol{x}^5 = (0,5)^T$, $\boldsymbol{x}^6 = (0,0)^T$ and $\boldsymbol{x}^7 = (3,1)^T$. Note that \boldsymbol{x}^7 is found when there are no active constraints, i.e. an inner point where $\nabla f(\boldsymbol{x}) = 0$.

Since the KKT-conditions are necessary, the global optimum must be in at least one KKT-point. Trying all of them gives $f^* = -25$ for $\boldsymbol{x}^* = \boldsymbol{x}^5 = (0, 5)^T$.

Question 4

(unconstrained optimization)

We have that

$$\nabla f(\boldsymbol{x}) = (2x_1 + 2x_2 + 4, 2x_1 - 4x_2)^{\mathrm{T}}, \quad \nabla^2 f(\boldsymbol{x}) = \begin{pmatrix} 2 & 2\\ 2 & -4 \end{pmatrix}$$
 (1)

a) For the steepest descent method:

$$\boldsymbol{p} = -\nabla f(\bar{\boldsymbol{x}}) = (-4, 0)^{\mathrm{T}}$$
(2)

b) For Newtons method:

$$\boldsymbol{p} = -\left[\nabla^2 f(\bar{\boldsymbol{x}})\right]^{-1} \nabla f(\bar{\boldsymbol{x}}) = (-4/3, -2/3)^{\mathrm{T}}$$
(3)

c) For Newtons method with Levenberg-Marquardt modification:

$$\boldsymbol{p} = -\left[\nabla^2 f(\bar{\boldsymbol{x}}) + \gamma I\right]^{-1} \nabla f(\bar{\boldsymbol{x}}) = (-4/9, 2/9)^{\mathrm{T}}$$
(4)

The methods a) and c) always finds descent directions (if γ is chosen large enough).

(3p) Question 5

(modelling)

A suggested integer programming formulation is as follows:

Sets: $\mathcal{L} := \{i | i \in \{1, ..., 7\}\}, \text{ the set of wind turbines},$ $\mathcal{M} := \{j | j \in \{Mon, ..., Fri\}\}, \text{ the set of different days},$ $\mathcal{N} := \{k | k \in \{1, 2\}\}, \text{ the set of two maintenance teams}.$

To simplify the problem, we add a parameter c_{ij} $i \in \mathcal{L}$, $j \in \mathcal{M}$, are the maintenance cost for different wind turbines at each day.

The decision variables are:

 $x_{i,j,k} = \begin{cases} 1 & \text{if maintenance team } k \in \mathcal{N} \text{ maintain wind turbine } i \in \mathcal{L} \text{ at day } j \in \mathcal{M}, \\ 0 & \text{otherwise.} \end{cases}$

Model:

$$\begin{array}{ll} \text{minimize} & \sum_{i \in \mathcal{L}} \sum_{j \in \mathcal{M}} \sum_{k \in \mathcal{N}} c_{ji} x_{ijk}, \\ \text{subject to} & \sum_{j \in \mathcal{M}} \sum_{k \in \mathcal{N}} x_{ijk} = 1 & i \in \mathcal{L}, \\ & \sum_{i \in \mathcal{L}} x_{ijk} \leq 1 & k \in \mathcal{N}, j \in \mathcal{M}, \\ & x_{ijk} \in \{0,1\} \quad i \in \mathcal{L}, j \in \mathcal{M}, k \in \mathcal{N}. \end{array}$$

Question 6

(true or false)

(1p) a) The claim is false. The functions h_i , i = 1, ..., k defining the equality constraints must be affine.

(1p) b) The claim is true. Choose arbitrary two points, x^1 and x^2 , an $\alpha \in [0, 1]$,

$$\begin{aligned} &\alpha f(\boldsymbol{x}^{1}) + (1-\alpha)f(\boldsymbol{x}^{2}) \\ &= \alpha \ln \sum_{j=1}^{n} e^{a_{j}x_{j}^{1}} + (1-\alpha) \ln \sum_{j=1}^{n} e^{a_{j}x_{j}^{2}} \\ &= \ln \sum_{j=1}^{n} e^{a_{j}x_{j}^{1}\alpha} + \ln \sum_{j=1}^{n} e^{a_{j}x_{j}^{2}(1-\alpha)} \\ &= \ln \sum_{j=1}^{n} e^{a_{j}x_{j}^{1}\alpha} \sum_{j=1}^{n} e^{a_{j}x_{j}^{2}(1-\alpha)} \quad \text{since } e^{x} > 0, \, \forall x \in \mathbb{R} \\ &\geq \ln \sum_{j=1}^{n} e^{a_{j}x_{j}^{1}\alpha} e^{a_{j}x_{j}^{2}(1-\alpha)} \\ &= \ln \sum_{j=1}^{n} e^{a_{j}(x_{j}^{1}\alpha + x_{j}^{2}(1-\alpha))} \\ &= \ln \sum_{j=1}^{n} e^{a_{j}(x_{j}^{1}\alpha + x_{j}^{2}(1-\alpha))} \\ &= f(\alpha \boldsymbol{x}^{1} + (1-\alpha)\boldsymbol{x}^{2}) \end{aligned}$$

By definition, f is a convex function.

(1p) c) The claim is false. Consider the linear program to minimize x_2 subject to the constraints $0 \le x_j \le 4, j = 1, 2$, and the additional constraint that $x_1 + x_2 \le 2$. This problem has the optimal solution set $X^* = \{x \in \mathbb{R}^2 | x_1 \in [0, 2]; x_2 = 0\}$. At the optimal solution $x^* = (1, 0)^T$, $x_1 + x_2 < 2$ holds. Believing that this means that the constraint $x_1 + x_2 \le 2$ therefore is redundant results, however, in a grave mistake, as the new problem has the optimal set $X^*_{\text{new}} = \{x \in \mathbb{R}^2 | x_1 \in [0, 4]; x_2 = 0\}$.

Question 7

(LP duality)

See Theorem 10.6 in the course book.