Chalmers/Gothenburg University Mathematical Sciences EXAM SOLUTION

TMA947/MMG621 NONLINEAR OPTIMISATION

Date:18-01-09Examiner:Michael Patriksson

Note: the solutions presented here are brief in relation to the requirements on your answers, in particular regarding your motivations.

Question 1

(the simplex method)

(2p) a) Rewrite the problem into standard form by adding/subtracting slack variables s_1 and s_2 to the left-hand side in the first and second constraint, respectively. Moreover, let z := -z to get the problem on minimization form. Thus, we get the following linear program:

minimize
$$z = -x_1 - 2x_2$$
,
subject to $-x_1 - x_2 + s_1 = 1$,
 $x_1 - x_2 - s_2 = 1$,
 $x_1, x_2, s_1, s_2 \ge 0$.

Introducing the artificial variable a, phase I gives the problem

minimize w = a, subject to $-x_1 - x_2 + s_1 = 1$, $x_1 - x_2 - s_2 + a = 1$, $x_1, x_2, s_1, s_2, a \ge 0$.

Using the starting basis $(s_1, a)^T$ gives

$$\boldsymbol{B} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \boldsymbol{N} = \begin{pmatrix} -1 & -1 & 0 \\ 1 & -1 & -1 \end{pmatrix}, \boldsymbol{x}_B = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \boldsymbol{c}_B = \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \boldsymbol{c}_N = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

The reduced costs, $\bar{\boldsymbol{c}}_N^T = \boldsymbol{c}_N^T - \boldsymbol{c}_B^T \boldsymbol{B}^{-1} \boldsymbol{N}$, for this basis is $\bar{\boldsymbol{c}}_N^T = \begin{pmatrix} -1 & 1 & 1 \end{pmatrix}$, which means that x_1 enters the basis. The minimum ratio test implies that a leaves.

Thus, we move on to phase II using the basis $(s_1, x_1)^T$, and

$$\boldsymbol{B} = \begin{pmatrix} 1 & -1 \\ 0 & 1 \end{pmatrix}, \boldsymbol{N} = \begin{pmatrix} -1 & 0 \\ -1 & -1 \end{pmatrix}, \boldsymbol{x}_B = \begin{pmatrix} 2 \\ 1 \end{pmatrix}, \boldsymbol{c}_B = \begin{pmatrix} 0 \\ -1 \end{pmatrix}, \boldsymbol{c}_N = \begin{pmatrix} -2 \\ 0 \end{pmatrix}.$$

The new reduced costs are $\bar{\boldsymbol{c}}_N^T = \begin{pmatrix} -3 & -1 \end{pmatrix}$

which means that x_2 enters the basis. From the minimum ratio test we get $\boldsymbol{B}^{-1}\boldsymbol{N}_1 = \begin{pmatrix} -2 & -1 \end{pmatrix}^T < \mathbf{0}$, meaning that the problem is unbounded.

(1p) b) A direction of unboundedness is $\boldsymbol{l}(\mu) = \begin{pmatrix} 1 & 0 & 2 & 0 \end{pmatrix}^T + \mu \begin{pmatrix} 1 & 1 & 2 & 0 \end{pmatrix}^T$, $\mu \ge 0$.

(3p) Question 2

(gradient projection)

The gradient of f at the point $\boldsymbol{x}_0 = (0,2)^T$ is $\nabla f(\boldsymbol{x}_0) = (2,8)^T$. Taking a step in the negative gradient direction with $\alpha = 1/8$ gives the new point $\boldsymbol{x}_0 - (1/8)(2,8)^T = (-1/4,1)$.

Projecting this point to the feasible set yields the new iterate $x_1 = (0, 1)$.

This point is clearly neither a local nor a global minimum. To check this, perform another iteration and see that the new iterate is not the same as x_1 .

(3p) Question 3

(optimality conditions for special feasible sets)

Thanks to the linearity of the constraints, the problem satisfies the Abadie constraint qualification and the Karush–Kuhn–Tucker conditions are necessary for the local optimality of \boldsymbol{x} . Introducing the multiplier μ for the equality constraint and λ_j for the sign constraints on x_j we obtain the Lagrangian function $L(\boldsymbol{x}, \mu, \boldsymbol{\lambda}) := b\mu + \sum_{j=1}^{n} (f_j(x_j) + [\mu - \lambda_j]x_j)$. Assume that $(\boldsymbol{x}^*, \mu^*, \boldsymbol{\lambda}^*)$ is a KKT point. Setting the partial derivatives of L to zero yields

$$\phi'_{j}(x_{j}^{*}) = \lambda_{j}^{*} - \mu^{*}, \qquad j = 1, \dots, n,$$
(1)

and further, from complementarity, that

$$\lambda_j^* x_j^* = 0, \qquad j = 1, \dots, n$$

For a j with $x_j^* > 0$ it must then hold that $\phi'_j(x_j^*) = -\mu^*$. Suppose instead that $x_j^* = 0$. Then since $\lambda_j^* \ge 0$ must hold, we find, from the characterization (1), that $\phi'_j(x_j^*) = \lambda_j^* - \mu^* \ge -\mu^*$, and we are done.

Question 4

(Karush–Kuhn–Tucker)

(2p)

a) Let $g_1(\boldsymbol{x}) := -x_1^2 - x_2^2 + 25$, $g_2(\boldsymbol{x}) := x_1 - 4$, $g_3(\boldsymbol{x}) := x_2 - 4$, $g_4(\boldsymbol{x}) := -x_1$ and $g_5(\boldsymbol{x}) := -x_2$ with respective gradients $\nabla g_1 = (-2x_1, -2x_2)^T$, $\nabla g_2 = (1, 0)^T$, $\nabla g_3 = (0, 1)^T$, $\nabla g_4 = (-1, 0)^T$ and $\nabla g_5 = (0, -1)^T$. Moreover, $\nabla f = (-2x_1 + 2, 0)^T$. The KKT-conditions are as follows:

$$\nabla f(x^*) + \sum_{i=1}^{5} \mu_i \nabla g_i(x^*) = 0,$$

$$\mu_i g_i(x^*) = 0, i = 1, \dots, 5,$$

$$\mu_i \ge 0, i = 1, \dots, 5.$$

Since the objective function f is not convex, the KKT conditions are not sufficient.

To prove KKT conditions are necessary, we use LICQ. For the interior points, there is no active constraints, and for the points on the boundary but not extreme points, there is only one active constraint, so the gradient of the active constraint must be linearly independent. So we only need to check three extreme points: $(4,3)^T$, $(3,4)^T$, $(4,4)^T$. For point $(4,3)^T$, the gradient of the active constraints are $(-8, -6)^T$ and $(1,0)^T$, obviously they are linearly independent. For point $(3,4)^T$, the gradient of the active constraints are $(-6, -8)^T$ and $(1,0)^T$, obviously they are linearly independent. For point $(4,4)^T$, the gradient of the active constraints are $(0,1)^T$ and $(1,0)^T$, obviously they are linearly independent. So LICQ holds at every feasible point. Thus, the KKT-conditions are necessary.

(1p) b) By letting different combinations of constraints be active, we can see when only g_2 active, we get (4, a), 3 < a < 4 are KKT points. When g_1 and g_2 are active, we get (4, 3) is a KKT point. When g_2 and g_3 are active, we get (4, 4) is a KKT point. So $(4, a), 3 \leq a \leq 4$ are KKT points. Since KKT conditions are necessary, so the optimal solution must be KKT points. Since all KKT points give the same objective function value -8, so all the KKT points are optimal.

(3p) Question 5

(modelling)

Let S_1, S_2, \ldots, S_m be the sets, and let $U = \{1, \ldots, n\}$ be the universe to cover. Now let the binary parameters $s_{ij} = 1$ if the element j is in the set S_i for $i \in \{1, \ldots, m\}$ and $j \in \{1, \ldots, n\}$, and $s_{ij} = 0$ otherwise. Let w_i be the weight of set S_i .

Let x_i be a binary variable where $x_i = 1$ if set S_i is included in the sub-collection, where $i \in \{1, \ldots, m\}$, and $x_i = 0$ otherwise. The weighted set covering problem can now be formulated as:

minimize
$$\sum_{i=1}^{m} w_i s_i,$$

subject to
$$\sum_{i=1}^{m} s_{ij} x_i \ge 1, \quad j \in \{1, \dots, n\},$$

$$x_{ij} \in \{0, 1\}$$

Question 6

(true or false)

- (1p) a) False. Consider $f(x) = x^3$ at x = 0; a negative direction from 0 clearly reduces the value of f, while f'(0) = 0.
- (1p) b) True. The claim is a characterization of the line search being exact in the direction of the vector $x^{t+1} x^t$.
- (1p) c) False. The solution set of the two linear inequalities $a^{T}x \ge b$ and $a^{T}x \le b$, defines, by definition, a polyhedron, as it is the solution set of a collection of linear inequalities. On the other hand, the solution set also is a line segment in \mathbb{R}^{n} .

(3p) Question 7

(Farkas' lemma)

See the course book.