TMA947 / MMG621 - Nonlinear optimisation

Exercise 4 - Linear programming

October 23, 2017

E4. 1 (medium) Consider the feasible set $\left\{\boldsymbol{x} \in \mathbb{R}^{n} \mid A \boldsymbol{x} \leq \boldsymbol{b}, x \geq \mathbf{0}^{n}\right\}$, where

$$
A=\left(\begin{array}{ccc}
1 & 1 & 1 \\
1 & -1 & 1 \\
-1 & 1 & 1 \\
-1 & -1 & 1
\end{array}\right), \boldsymbol{b}=\left(\begin{array}{c}
3 \\
1 \\
1 \\
-1
\end{array}\right)
$$

Draw the feasible region (preferably in MATLAB ${ }^{1}$). Write the program on standard form and find a BFS corresponding to the extreme point $(1,1,1)^{T}$. Is it degenerate? How many different BFS correspond to this point? Compare to the extreme point $(1,2,0)^{T}$.

E4.2 (easy) Write on standard form

$$
\begin{array}{ll}
\operatorname{maximize} & 3 x_{1}-6 x_{2}, \\
\text { subject to } & 10 x_{1}-3 x_{2}=5, \\
& -x_{1}-3 x_{2} \geq 7, \\
& x_{2} \geq 5
\end{array}
$$

E4.3 (easy) Consider the polyhedron

$$
\begin{aligned}
x_{1}+x_{2} & \geq 1, \\
x_{1}-x_{2} & \leq 1 \\
-x_{1}+x_{2} & \leq 1, \\
x_{1} & \leq 2 \\
x_{2} & \leq 2 .
\end{aligned}
$$

Find the BFS which corresponds to the extreme point $(2,2)^{T}$. Construct new basic solutions by using four out of the five columns included in the BFS corresponding to $(2,2)^{T}$ and one column previously not included. Can you obtain any BFS? Which ones? What does theory say about this? (Hint: use MATLAB or Mathematica to calculate $B^{-1} \boldsymbol{b}$. Note also that a variable has to be included into the basis in order to obtain a non-zero value.)

E4.4 (easy) Solve the following LP grahically.

$$
\begin{aligned}
& \text { minimize } \quad x_{1}+4 x_{2} \\
& \text { subject to } x_{1}+2 x_{2} \leq 4 \\
& x_{1}+x_{2} \geq 2 \\
& x_{1}+2 x_{2} \geq 3 \\
& x_{1}, x_{2} \geq 0 \text {. }
\end{aligned}
$$

Is the optimal solution a BFS, if so, is it unique?

[^0]E4.5 (easy) Solve the following linear program using Phase I and II of the simplex method.

$$
\begin{array}{lc}
\operatorname{minimize} & z=-2 x_{1}+x_{2} \\
\text { subject to } & x_{1}-3 x_{2} \leq-3 \\
& 0 \leq x_{1} \\
& 0 \leq x_{2} \leq 2
\end{array}
$$

E4.6 (medium) Solve the following linear program using Phase I and II of the simplex method.

$$
\begin{aligned}
& \text { minimize } \quad z=x_{1}+2 x_{2} \\
& \text { subject to } \quad 2 x_{1}-2 x_{2} \leq-2 \text {, } \\
& 2 x_{1}+x_{2} \leq 2, \\
& x_{1} \in \mathbb{R} \text {, } \\
& x_{2} \geq 0 \text {. }
\end{aligned}
$$

E4.7 (medium) Consider the application of the simplex method to a general LP and suppose that you, unlike in the standard procedure taught in this course, at some iteration a) choose the entering variable to be a non-basic variable with a negative reduced cost but not having the most negative reduced cost, or b) choose the outgoing variable as a basic variable with the $B^{-1} N_{j^{*}}$ component >0 but not fulfilling the minimum ratio test. Which of these choices is a critical mistake?

E4.8 (easy) Solve the following linear program using Phase I and II of the simplex method.

$$
\begin{array}{lr}
\operatorname{minimize} \quad z= & 2 x_{1}-x_{2}+x_{3}, \\
\text { subject to } & x_{1}+2 x_{2}-x_{3} \leq 7, \\
& -2 x_{1}+x_{2}-3 x_{3} \leq-3, \\
& x_{1}, \quad x_{2}, \quad x_{3} \geq 0
\end{array}
$$

E4.9 (easy) Solve the following linear program using Phase I and II of the simplex method.

$$
\begin{aligned}
& \operatorname{minimize} \quad z=-x_{1}+x_{2} \\
& \text { subject to } \quad \begin{aligned}
-x_{1}+2 x_{2} & \geq 1 / 2, \\
-2 x_{1}-2 x_{2} & \geq 1, \\
x_{1} & \in \mathbb{R} \text { (free), } \\
& x_{2}
\end{aligned} \frac{\geq 0}{}
\end{aligned}
$$

E4.10 (medium) Solve the following linear program using phase I and II of the simplex method.

$$
\begin{array}{lll}
\operatorname{minimize} \quad z=2 x_{1} & \\
\text { subject to } \quad x_{1}-x_{3} & =3, \\
x_{1}-x_{2}-2 x_{4} & =1, \\
2 x_{1} & +x_{4} & \leq 7, \\
& x_{1}, \quad x_{2}, \quad x_{3}, & x_{4}
\end{array}=0 .
$$

E4.11 (easy) Solve the following linear program using phase I and II of the simplex method.

$$
\begin{aligned}
& \operatorname{minimize} z=x_{1}+x_{2}+3 x_{3}, \\
& \text { subject to } \\
& \quad-x_{2}+3 x_{3} \leq-1, \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& \\
& x_{1}, \quad x_{1}+x_{2}, \quad x_{3} \leq 1, \\
&
\end{aligned}
$$

Is the optimal solution unique?

E4.12 (medium) Solve the following linear program:

$$
\begin{aligned}
& \text { minimize } \quad z=-x_{1}-x_{2} \text {, } \\
& \text { subject to } \quad-x_{1}-2 x_{2}-x_{3}=2 \text {, } \\
& 3 x_{1}+x_{2} \leq-1 \text {, } \\
& x_{2}, \quad x_{3} \geq 0, \\
& x_{1} \quad \in \mathbb{R} \text { (free). }
\end{aligned}
$$

Is the optimal solution unique?

[^0]: ${ }^{1}$ Introduce an indicator function χ for the polyhedron such that $\chi(\boldsymbol{x})=1$ for $\boldsymbol{x} \in P$ and $\chi(\boldsymbol{x})=0$ otherwise. Use the command isosurface. Do not use to many gridpoints!

