TMA947 / MMG621 — Nonlinear optimisation

Exercise 4 – Linear programming

October 23, 2017

E4.1 (medium) Consider the feasible set $\{x \in \mathbb{R}^n | Ax \leq b, x \geq 0^n\}$, where

Draw the feasible region (preferably in MATLAB¹). Write the program on standard form and find a BFS corresponding to the extreme point $(1,1,1)^T$. Is it degenerate? How many different BFS correspond to this point? Compare to the extreme point $(1,2,0)^T$.

E4.2 (easy) Write on standard form

maximize
$$3x_1 - 6x_2$$
,
subject to $10x_1 - 3x_2 = 5$,
 $-x_1 - 3x_2 \ge 7$,
 $x_2 \ge 5$.

E4.3 (easy) Consider the polyhedron

$$\begin{aligned}
 x_1 + x_2 &\geq 1, \\
 x_1 - x_2 &\leq 1, \\
 -x_1 + x_2 &\leq 1, \\
 x_1 &\leq 2, \\
 x_2 &\leq 2.
 \end{aligned}$$

Find the BFS which corresponds to the extreme point $(2,2)^T$. Construct new basic solutions by using four out of the five columns included in the BFS corresponding to $(2,2)^T$ and one column previously not included. Can you obtain any BFS? Which ones? What does theory say about this? (Hint: use MATLAB or Mathematica to calculate $B^{-1}b$. Note also that a variable has to be included into the basis in order to obtain a non-zero value.)

E4.4 (easy) Solve the following LP grahically.

minimize
$$x_1 + 4x_2$$

subject to $x_1 + 2x_2 \le 4$
 $x_1 + x_2 \ge 2$
 $x_1 + 2x_2 \ge 3$
 $x_1, x_2 \ge 0$

Is the optimal solution a BFS, if so, is it unique?

¹Introduce an indicator function χ for the polyhedron such that $\chi(\boldsymbol{x}) = 1$ for $\boldsymbol{x} \in P$ and $\chi(\boldsymbol{x}) = 0$ otherwise. Use the command isosurface. Do not use to many gridpoints!

E4.5 (easy) Solve the following linear program using Phase I and II of the simplex method.

minimize
$$z = -2x_1 + x_2$$

subject to $x_1 - 3x_2 \le -3$,
 $0 \le x_1$,
 $0 \le x_2 \le -3$.

E4.6 (medium) Solve the following linear program using Phase I and II of the simplex method.

minimize
$$z = x_1 + 2x_2$$

subject to $2x_1 - 2x_2 \le -2$,
 $2x_1 + x_2 \le 2$,
 $x_1 \in \mathbb{R}$,
 $x_2 \ge 0$.

E4.7 (medium) Consider the application of the simplex method to a general LP and suppose that you, unlike in the standard procedure taught in this course, at some iteration a) choose the entering variable to be a non-basic variable with a negative reduced cost but not having the most negative reduced cost, or b) choose the outgoing variable as a basic variable with the $B^{-1}N_{j^*}$ component > 0 but not fulfilling the minimum ratio test. Which of these choices is a critical mistake?

E4.8 (easy) Solve the following linear program using Phase I and II of the simplex method.

minimize
$$z = 2x_1 - x_2 + x_3,$$

subject to $x_1 + 2x_2 - x_3 \le 7,$
 $-2x_1 + x_2 - 3x_3 \le -3,$
 $x_1, x_2, x_3 \ge 0.$

E4.9 (easy) Solve the following linear program using Phase I and II of the simplex method.

$$\begin{array}{lll} \text{minimize} & z=& -x_1+ \ x_2,\\ \text{subject to} & & -x_1+2x_2 \ \geq 1/2,\\ & & -2x_1-2x_2 \ \geq 1,\\ & & x_1 & \in \mathbb{R} \ \text{(free)},\\ & & x_2 \ \geq 0. \end{array}$$

E4.10 (medium) Solve the following linear program using phase I and II of the simplex method.

E4.11 (easy) Solve the following linear program using phase I and II of the simplex method.

minimize
$$z = x_1 + x_2 + 3x_3$$
,
subject to $-x_2 + 3x_3 \leq -1$,
 $-2x_1 + x_2 - x_3 \leq -1$,
 $x_1, x_2, x_3 \geq 0$.

Is the optimal solution unique?

E4.12 (medium) Solve the following linear program:

Is the optimal solution unique?