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Lecture 2 (Convexity)

Convex sets

– S ⊆ Rn convex set if x1,x2 ∈ S and λ ∈ (0, 1) implies that λx1 + (1− λ)x2 ∈ S.

– The intersection of convex sets is a convex set.

– If the set can be written as S = {x ∈ Rn | gi(x) ≤ 0, i = 1, . . . ,m}, where the functions
gi : Rn 7→ R are convex functions, then S is a convex set.

– The convex hull of set S is the set of all convex combinations of points in S.

– Caratheodory’s theorem: A point x ∈ convS, where S ⊆ Rn, can be written as a convex
combination of n+ 1 or fewer points of S.

– Polytope = The convex hull of finitely many points.

– Polyhedron = The intersection of finitely many half-spaces.

– Representation theorem: ”Polyhedron = Polytope + Polyhedral cone”. (Implies ”Bounded
polyhedron = Polytope”).

– An extreme point of a convex set is a point that cannot be expressed as a convex combination
of two other points in the set.

– A set C ⊆ Rn is a cone if λx ∈ C whenever x ∈ C and λ > 0.

– Separation theorem: Either a point lies in a convex set or one can separate the point from
the set by a hyperplane.

– Farkas’ Lemma: Either a point lies in the polyhedral cone spanned by the columns of a
matrix or one can separate it from the cone by a hyperplane.

Most important fact regarding Farkas’ Lemma: To every inconsistent linear system (system
that does not have a solution) there exists a corresponding consistent linear system (system
that does have a solution).
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Convex functions

– f : Sn 7→ R is a convex function on S if f(λx1+(1−λ)x2) ≤ λf(x1)+(1−λ)f(x2) whenever
x1,x2 ∈ S and λ ∈ (0, 1)

– A function f is concave if −f is convex.

– The sum of convex functions is a convex function.

– The epigraph of a convex function is a convex set.

– If f ∈ C1, then f is convex on the convex set S if and only if f(y) ≥ f(x) +∇f(x)T(y − x)
for all x,y ∈ S.

– If f ∈ C2, then f is convex on the convex set S if and only if∇2f(x) � 0 for all x ∈ S.

Convex problem

– A problem is a convex optimization problem if the feasible set is a convex set and the objec-
tive function is convex on the feasible set.

Lecture 3 (Optimality conditions)

Consider the problem to

minimize f(x),

subject to x ∈ S.

– A global minimum is a point which has lowest objective function value on the feasible set.

– A local minimum is a point which has lowest objective function value in a neighborhood of
the point.

– Fundamental theorem: Let f be convex on the convex set S. Then every local minimum is
also a global minimum.

– Weierstrass’ theorem: If S is nonempty and closed, and f is weakly coercive w.r.t. S, then
there exists an optimal solution to the problem.

Unconstrained optimization S = Rn

– (f ∈ C1) If x∗ is a local minimum, then∇f(x∗) = 0.

– (f ∈ C2) If x∗ is a local minimum, then∇f(x∗) = 0 and∇2f(x∗) � 0.

– If f is convex then x∗ is a global minimum if and only if∇f(x∗) = 0.
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Constrained optimization S 6= Rn

– (f ∈ C1) If x∗ is a local minimum, then∇f(x∗)Tp ≥ 0 holds for all feasible directions p.

– Suppose S is convex. Then a stationary point x∗ is a point fulfilling the following four
equivalent statements

∇f(x∗)T(x− x∗) ≥ 0, x ∈ S.
min
x∈S
∇f(x∗)T(x− x∗) = 0.

x∗ = ProjS [x∗ −∇f(x∗)].

−∇f(x∗) ∈ NS(x∗).

where NS(x∗) is the normal cone to S at x∗.

– If x∗ is a local minimum then it is a stationary point.

– If the problem is convex, then a stationary point is a global minimum.

Lecture 4 (Unconstrained optimization)

– Use line search type algorithms. Iteratively update iterates xk by taking steps αk in the
directions pk.

– Steepest descent: pk = −∇f(xk).

– Newtons algorithm: Solve∇2f(xk)pk = −∇f(xk)

– Levenberg-Marquardt: Solve (∇2f(xk) + γI)pk = −∇f(xk)

– Step lengths αk can be found using Armijos step length rule. Basic idea: Accept a step length
if the decrease in objective function value is at least a portion of the predicted decrease.

Lecture 5/6 (Optimality conditions)

Geometric optimality conditions

– The intuitive necessary optimality condition is that ”if a point x∗ is a local minimum, it
should not be possible to draw a curve starting atx∗ inside S such that the objective function
f decreases along it”.

– The set of all possible curves starting at x and moving inside S is the tangent cone

TS(x) := {p | ∃{xk}, {λk} ≥ 0 : limxk = x, limλk(xk − x) = p}.

– We let F̊ (x) := {p | ∇f(x)Tp < 0}. All the vectors in this set (cone) are descent directions.

– We can now state the intuitive geometric optimality conditions as: If x∗ is a local minimum
then TS(x∗) ∩ F̊ (x∗) = ∅.

3



TMA947 / MMG621 – Nonlinear optimisation Overview

KKT conditions

– Assume that the feasible set is S = {x ∈ Rn | gi(x) ≤ 0, i = 1, . . . ,m}.

– Let the coneG(x) = {p ∈ Rn | gi(x)Tp ≤ 0, i ∈ I(x)}, where I(x) are the active constraints
at the point x.

– It always holds that G(x) ⊆ TS(x).

– We say that Abadie’s constraint qualification holds at a point x ∈ S if TS(x) = G(x).

– Assuming Abadie’s CQ, the geometric optimality conditions can be written asG(x)∩F̊ (x) =
∅.
But this says that a specific linear system is inconsistent. Using Farkas’ Lemma, we know
that there exists a corresponding consistent system. This system is the KKT system.

– We thus have: If Abadie’s CQ holds and x∗ is a local minimum, then x∗ is a KKT point.

– A point being a KKT point just means that the negative gradient of the objective function
can be written as a positive linear combination of the gradients of the active constraints.

– LICQ and Slater’s CQ both imply Abadie’s CQ.

– If the problem is convex, then every KKT point is a global minimum.

Lecture 7 (Lagrangian duality)

Relaxation

– A relaxation to an optimization problem is a problem where a lower (or equal) objective
function is optimized over a larger (or equal) set. In other words,

1. The original problem’s feasible set is a subset of the relaxed problem’s feasible set.
2. The original problem’s objective-function is greater than or equal to the relaxed prob-

lem’s objective-function.

– If the optimal solution to the relaxed problem is feasible in the original problem and has the
same objective value, then it is also optimal in the original problem.

Lagrangian relaxation

– Basic idea: Some constraints are complicated, so they are instead added to the objective
function with a penalty. A dual problem is then formulated where the objective is to find
the optimal penalty parameters.

– q(µ) = minx∈X f(x) + µTg(x) is the dual objective function.

– Weak duality: For any feasible x in the primal problem, and any µ ≥ 0, it holds that q(µ) ≤
f(x).

– If Slater’s CQ holds, then also Strong duality: f∗ = q∗.
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Lecture 8/9 (Linear programming)

– Minimize a linear function over a polyhedron.

– If the problem has an optimal solution, then one of the extreme points will be optimal.

– Extreme points of a polyhedron in standard form can be represented as a partition of basic
and non-basic variables, i.e., a partitionA = [B,N ].

– A partitionA = [B,N ] represents a basic feasible solution (BFS) if xB = B−1b ≥ 0.

– Degenerate: A BFS is called degenerate if xB ≯ 0.

– Unboundedness: If B−1N j ≤ 0, where j is chosen such that the reduced costs for (xN )j is
negative, then the objective function value is unbounded from below.

– The idea of the simplex method is to iteratively update the partition by replacing one basic
variable at a time, until an optimality condition is fulfilled (the reduced costs are all non-
negative) or unboundedness is detected.

– Phase I is used for finding a starting BFS (introduce artificial variables which we try to move
into the non-basic variables).

Lecture 10 (LP duality)

– If the primal problem has n variables and m constraints, then there exists a corresponding
dual problem which has m variables and n constraints.

– Weak duality: For a primal feasible x and a dual feasible y, we have that bTy ≤ cTx.

– Strong duality: If both problems have feasible solutions, then bTy∗ = cTx∗ for the optimal
solutions.

– The dual problem is the same as the Lagrangian dual problem.

– Use canonical form to construct dual problem.

– Complementary slackness: Either the slack or the dual variable corresponding to a con-
straint is zero.

– Meaning of dual: The dual variable is the measure on how much the optimal value would
change if the right-hand side of the constraint is changed. (Now complementary slackness
becomes intuitive!)
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Lecture 11 (Convex optimization)

– A subgradient p to a function f at a point x is a vector fulfilling f(y) ≥ f(x) + pT(y − x)
for all y

– The subdifferential is the set of all subgradients.

– If the function is differentiable, then the subdifferential is the singleton consisting of the
gradient of the function.

– A necessary and sufficient optimality condition for unconstrained optimization of a convex
function is that the zero vector lies in the subdifferential.

– A subgradient is not necessarily a descent direction. It does, however, cut away half-spaces
where the optimal solution does not lie.

Lecture 13 (Feasible direction methods)

– Iterative algorithms: Update points xk by taking steps αk in directions pk.

The directions pk needs to be feasible directions and the step length must not be too large
(the next iterate should stay inside the feasible set).

– Frank-Wolfe algorithm: A search direction is found through the minimization of a linear
approximation of the function. The next iterate is taken as the best convex combination of
the current point and the optimal solution to the linear approximation.

– Simplicial decomposition: Several optimal solutions to the linear approximations are saved,
and the new iterate is taken as the best convex combination of the current point and all
saved points.

– Gradient projection algorithm: Let xk+1 = ProjS [xk − αk∇f(xk)], where the value of the
step length αk is chosen by an approximate line search (such as Armijo).

Lecture 14 (Constrained optimization)

– Basic idea of penalty methods: Replace the constrained optimization problem with an un-
constrained one that includes a penalty term representing the constraints. Update the penalty
parameter so that the model of the relaxed problem becomes a better and better approxima-
tion of the original one.

– Exterior penalty methods: Penalize being infeasible.

– Interior penalty methods: Penalize being close to the constraints (the iterates are always
strictly feasible).

– Convergence results of the penalty methods: Under specific assumptions, the iterates con-
verge to KKT points.

– Sequential quadratic programming (SQP): At iterate xk, approximate problem with a QP
subproblem using the Lagrangian to find new search direction.
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Some Tips & Tricks for the Exam

– Don’t start solving problem 1 just because it is the first one. Instead, read through the exam
to get an overview and make mental notes on which ones to start with. If you start with
something easy, you get a confidence boost and you don’t waste too much time on the very
toughest ones first (as it could take an unpredictable amount of time to solve those).

– Try to help yourself as much as possible using graphical illustrations; problems are some-
times given in 2D, which means that you can get pictures on what’s going on.

– If you are asked to perform a couple of iterations of an algorithm, also here try to illustrate
what’s going on by graphing it - if it’s in 2D, of course.

– Again, when you perform calculations, test that what you do is consistent - such as checking
feasibility, that the objective value after a line search is correct, and has in fact decreased if
the problem concerns minimisation, and so on.
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