Lecture 10

LP duality

Emil Gustavsson
Fraunhofer-Chalmers Centre
November 27, 2017

Consider the primal LP written in standard form:

$$
\begin{align*}
& z^{*}=\operatorname{infimum~} \quad \boldsymbol{c}^{T} \boldsymbol{x} \\
& \text { subject to } \quad \boldsymbol{A x}=\boldsymbol{b}, \tag{P}\\
& \boldsymbol{x} \geq \mathbf{0} .
\end{align*}
$$

where $\boldsymbol{A} \in \mathbb{R}^{m \times n}, \boldsymbol{c} \in \mathbb{R}^{n}, \boldsymbol{b} \in \mathbb{R}^{m}$. The corresponding dual LP is

$$
\begin{align*}
q^{*}=\text { supremum } & \boldsymbol{b}^{T} \boldsymbol{y}, \\
\text { subject to } & \boldsymbol{A}^{T} \boldsymbol{y}
\end{aligned} \leq \boldsymbol{c}, \quad, \quad \begin{aligned}
& \boldsymbol{y} \in \mathbb{R}^{m} . \tag{D}
\end{align*}
$$

(P) Minimization problem with n variables and m constraints.
(D) Maximization problem with m variables and n constraints.

Simplex algorithm, review

- At a basic feasible solution (BFS), the variables can be ordered s.t.

$$
\boldsymbol{x}=\binom{x_{B}}{\boldsymbol{x}_{N}}, \quad A=(\boldsymbol{B}, \boldsymbol{N}), \quad \boldsymbol{c}=\binom{\boldsymbol{c}_{B}}{\boldsymbol{c}_{N}},
$$

where \boldsymbol{x}_{B} are basic variables and \boldsymbol{x}_{N} the non-basic variables.

- For a specific basis matrix \boldsymbol{B}, we have that

$$
\begin{aligned}
& x_{B}=\boldsymbol{B}^{-1} \boldsymbol{b}, \\
& \boldsymbol{x}_{N}=\mathbf{0}^{n-m}
\end{aligned}
$$

- Simplex algorithm iteratively updates \boldsymbol{B}, one column at a time, until it terminates (optimality or objective value $\rightarrow-\infty$).

Introducing a dual vector

- Apply simplex algorithm, and assume an optimal basis B is found
- Optimal basis B means that the reduced costs are nonnegative:

$$
\begin{equation*}
\tilde{\boldsymbol{c}}_{N}^{T}=\boldsymbol{c}_{N}^{T}-\boldsymbol{c}_{B}^{T} \boldsymbol{B}^{-1} \boldsymbol{N} \geq\left(\mathbf{0}^{\boldsymbol{n - m}}\right)^{T} \tag{1}
\end{equation*}
$$

We introduce the (optimal dual) vector

$$
\begin{equation*}
y^{*}:=\left(c_{\mathrm{B}}^{\top} B^{-1}\right)^{\top} \tag{2}
\end{equation*}
$$

- By definition in (2), $b^{T} y^{*}=\left(y^{*}\right)^{T} b=c_{B}^{T}\left(B^{-1} b\right)=c_{B}^{T} x_{B}=c^{T} x^{*}$
- In addition, by optimality (i.e., (1)),

$$
\left.\begin{array}{l}
\boldsymbol{c}_{B}^{T}-\left(\boldsymbol{y}^{*}\right)^{T} \boldsymbol{B}=\mathbf{0}^{m} \\
\boldsymbol{c}_{N}^{T}-\left(\boldsymbol{y}^{*}\right)^{T} \boldsymbol{N} \geq\left(\mathbf{0}^{n-m}\right)^{T}
\end{array}\right\} \Longrightarrow \boldsymbol{c}^{T}-\left(\boldsymbol{y}^{*}\right)^{T} \boldsymbol{A} \geq \mathbf{0}^{n}
$$

Thus, y^{*} satisfies $\boldsymbol{A}^{\top} \boldsymbol{y}^{*} \leq \boldsymbol{c}$ and $b^{\top} y^{*}=c^{\top} x^{*}$

- $\boldsymbol{y}^{*}:=\left(\boldsymbol{c}_{B}^{T} \boldsymbol{B}^{-1}\right)^{T}$ is feasible to dual problem (D)

$$
\begin{align*}
q^{*}=\text { supremum } & \boldsymbol{b}^{T} \boldsymbol{y}, \\
\text { subject to } & \boldsymbol{A}^{T} \boldsymbol{y} \leq \boldsymbol{c}, \tag{D}\\
& \boldsymbol{y} \in \mathbb{R}^{m} .
\end{align*}
$$

- AND, \boldsymbol{y}^{*} achieve $b^{T} y^{*}=c^{T} x^{*}=z^{*}=$ primal optimal obj. value
- As we will see, y^{*} is indeed optimal to (D). Why?

For any $x \in \mathbb{R}^{n}$ feasible to (P), and $\boldsymbol{y} \in \mathbb{R}^{m}$ feasible to (D):

$$
\begin{aligned}
\boldsymbol{A} \boldsymbol{x} & =\boldsymbol{b}, & \text { and } & \boldsymbol{A}^{T} \boldsymbol{y}
\end{aligned} \leq \boldsymbol{c},,
$$

we have

$$
\boldsymbol{c}^{\top} x \geq \boldsymbol{y}^{\top} \boldsymbol{A} \boldsymbol{x}=\boldsymbol{y}^{\top} \boldsymbol{b}=\boldsymbol{b}^{T} \boldsymbol{y} \Longrightarrow c^{\top} x \geq \boldsymbol{b}^{\top} y
$$

- $z^{*} \geq q^{*}$ (i.e., optimal primal obj. val \geq optimal dual obj. val)
- We maximize $\boldsymbol{b}^{T} \boldsymbol{y}\left(\right.$ s.t. $\left.A^{T} y \leq c\right)$ to get the best lower bound.

Dual problem $=$ problem to find best primal objective lower bound

$$
\begin{align*}
q^{*}=\text { supremum } & \boldsymbol{b}^{T} \boldsymbol{y}, \\
\text { subject to } & \boldsymbol{A}^{T} \boldsymbol{y} \leq \boldsymbol{c}, \tag{D}\\
& \boldsymbol{y} \in \mathbb{R}^{m} .
\end{align*}
$$

- Under simple assumption, $q^{*}=z^{*}\left(\right.$ remember $y^{*}=\left(c_{B}^{T} B^{-1}\right)^{T}$?)
- $(\mathrm{D})=$ Lagrangian dual problem "dualizing" $A x=b$ in (P)
- Can define dual problems for all types of LPs (not just standard form)
- Let A be the constraint matrix. Let a_{i}^{T} denote the i-th row of A, and A_{j} denote the j-th column of A :
(primal problem)
(dual problem)
$\underset{x}{\operatorname{minimize}}$

$$
c^{T} x
$$

maximize $b^{T} y$
subject to $a_{i}^{T} x \geq b_{i}, \quad i \in M_{1}$,
$a_{i}^{T} x \leq b_{i}, \quad i \in M_{2}$,
$a_{i}^{T} x=b_{i}, \quad i \in M_{3}$,
$x_{j} \geq 0, \quad j \in N_{1}$
$x_{j} \leq 0, \quad j \in N_{2}$
$x_{j} \in \mathbb{R}^{n}, \quad j \in N_{3}$
y
subject to $\quad y_{i} \geq 0, \quad i \in M_{1}$,
$y_{i} \leq 0, \quad i \in M_{2}$,
$y_{i} \in \mathbb{R}^{m}, \quad i \in M_{3}$,
$A_{j}^{T} y \leq c_{j}, \quad j \in N_{1}$,
$A_{j}^{T} y \geq c_{j}, \quad j \in N_{2}$,
$A_{j}^{T} y=c_{j}, \quad j \in N_{3}$.

- In class, we discuss properties of pair (P) and (D)

$$
\begin{align*}
z^{*}= & \text { infimum } \quad \boldsymbol{c}^{T} \boldsymbol{x}, \\
\text { subject to } \quad \boldsymbol{A x} & =\boldsymbol{b}, \tag{P}\\
\boldsymbol{x} & \geq \mathbf{0}, \\
q^{*}=\text { supremum } \quad \boldsymbol{b}^{T} \boldsymbol{y}, & \\
\text { subject to } \quad \boldsymbol{A}^{T} \boldsymbol{y} & \leq \boldsymbol{c}, \tag{D}\\
\boldsymbol{y} & \in \mathbb{R}^{m} .
\end{align*}
$$

- Analogous properties hold for other types of LP primal and dual

Weak duality theorem

If \boldsymbol{x} is a feasible solution to (P) and \boldsymbol{y} is a feasible solution to (D), then

$$
\boldsymbol{c}^{\top} x \geq \boldsymbol{b}^{T} y
$$

Proof: See slide 6

Corollary

- If the optimal objective value of primal problem (P) is $-\infty$, then dual problem (D) is infeasible.
- If the optimal objective value of dual problem (D) is $+\infty$, then primal problem (P) is infeasible.

Proof: Show first statement by contrapositive. Suppose $y \in \mathbb{R}^{m}$ feasible to (D). Then, $z^{*} \geq b^{T} y>-\infty$ by weak duality. Second statement similar (home exercise).

Corollary

If \boldsymbol{x} is a feasible solution to (P), \boldsymbol{y} is a feasible solution to (D), and

$$
\boldsymbol{c}^{\top} \boldsymbol{x}=\boldsymbol{b}^{T} \boldsymbol{y}
$$

then \boldsymbol{x} is optimal in (P) and \boldsymbol{y} is optimal in (D).

Proof: By statement assumption and weak duality theorem,

$$
\begin{array}{ll}
c^{T} x=b^{T} y \leq c^{T} \tilde{x}, & \forall \tilde{x}: A \tilde{x}=b, \tilde{x} \geq \mathbf{0}, \\
b^{T} y=c^{T} x \geq b^{T} \tilde{y}, & \forall \tilde{y}: A^{T} \tilde{y} \leq c
\end{array}
$$

Thus, \boldsymbol{x} is optimal in (P) and \boldsymbol{y} is optimal in (D).

Strong duality

Strong duality theorem

If both (P) and (D) are feasible, then

1. There exist x^{*} optimal to (P) and y^{*} optimal to (D)
2. $c^{T} x^{*}=b^{T} y^{*}\left(\right.$ so,$\left.z^{*}=q^{*}\right)$

Proof:

- (P) and (D) feasible implies simplex algorithm terminates with an optimal basis matrix B associated with optimal x^{*} (why?)
- Construct $\left(y^{*}\right)=\left(c_{B}^{T} B^{-1}\right)^{T}$, then $A^{T} y^{*} \leq c$ and $c^{T} x^{*}=b^{T} y^{*}$ (see Slide 4). Then y^{*} is optimal to (D) (why?)
- Hint: "why?" = weak duality

Minimum cut problem:

What is minimum rail capacities $\left(z^{*}\right)$ to destroy to prevent the Soviets from sending troops, in the event of war?

$$
\begin{aligned}
z^{*}=\min _{p, q} & u^{T} q \\
\text { s.t. } & A^{T} p+q \\
& \geq 0 \\
b^{T} p & \geq 1 \\
q & \geq 0
\end{aligned}
$$

Figure: Western USSR railroad

Maximum flow problem

Maximum flow problem:

What is maximum number of troops $\left(q^{*}\right)$ the Soviets can send?

$$
\begin{array}{rl}
q^{*}=\max _{x, s} & s \\
\text { s.t. } A x+b s & =0 \\
x & \leq u \\
x, s & \geq 0
\end{array}
$$

Figure: Western USSR railroad

- For a LP, only three possibilities are allowed:

1. There is a finite optimal solution.
2. The optimal objective value is unbounded (e.g., $-\infty$ for minimization problem).
3. The problem is infeasible.

- A LP and its dual can have the following possibilities:

$(D) \backslash(P)$	finite optimum	unbounded	infeasible
finite optimum	possible	impossible	impossible
unbounded	impossible	impossible	possible
infeasible	impossible	possible	possible

Complementary Slackness Theorem

Let \boldsymbol{x} be feasible in (P) and \boldsymbol{y} feasible in (D). Then
where $\boldsymbol{A}_{\cdot j}$ is column j of \boldsymbol{A}.

Proof:

$$
c^{T} x=b^{T} y \stackrel{A x=b}{\Longleftrightarrow}\left(c^{T} x-y^{T} A x\right)=0 \xlongequal[A^{T} y \leq c]{\stackrel{x \geq 0, A x=b}{\Longrightarrow}} x_{j}\left(c_{j}-\boldsymbol{A}_{\cdot j}^{T} \boldsymbol{y}\right)=0, \forall j
$$

Complementary slackness " \longrightarrow " direction due to strong duality Complementary slackness " \Longleftarrow " direction due to weak duality

Complementary Slackness Theorem

Let \boldsymbol{x} be feasible in (P) and \boldsymbol{y} feasible in (D). Then

$$
\left.\begin{array}{l}
\boldsymbol{x} \text { optimal to (P) } \\
\boldsymbol{y} \text { optimal to (D) }
\end{array}\right\} \Longleftrightarrow x_{j}\left(c_{j}-\boldsymbol{A}_{\cdot j}^{T} \boldsymbol{y}\right)=0, \quad j=1, \ldots, n,
$$

where $\boldsymbol{A}_{\cdot j}$ is column j of \boldsymbol{A}.

For a primal-dual pair of optimal solutions $\boldsymbol{x}^{*}, \boldsymbol{y}^{*}$

- If there is slack in one constraint, then the respective variable in the other problem is zero.
- If a variable is positive, then there is no slack in the respective constraint in the other problem.

Complementary slackness, III

Consider primal and dual pair
$\underset{x}{\operatorname{maximize}} c^{T} x$
(P^{\prime}) subject to $A x \leq b$
$x \geq 0$
minimize $b^{T} y$
y
(D') subject to $A^{T} y \geq c$
$y \geq 0$

Complementary Slackness Theorem Let x feasible to (P^{\prime}) and y feasible to (D'). Then,

$$
\left\{\begin{array} { l }
{ \boldsymbol { x } \text { optimal to } (\mathrm { P } ^ { \prime }) } \\
{ \boldsymbol { y } \text { optimal to } (\mathrm { D } ^ { \prime }) }
\end{array} \Longleftrightarrow \left\{\begin{array}{l}
x_{j}\left(c_{j}-y^{\top} A_{\cdot j}\right)=0, j=1, \ldots, n \\
y_{i}\left(A_{i \cdot x}-b_{i}\right)=0, i=1, \ldots, m
\end{array}\right.\right.
$$

Let B be optimal basis of

$$
\begin{aligned}
v(b):=\underset{x}{\operatorname{minimize}} & c^{\top} x \\
(P): \quad \text { subject to } & A x=b \\
& x \geq \mathbf{0}
\end{aligned}
$$

Consider problem with perturbed equality constraint RHS b^{\prime} :

$$
\begin{aligned}
& v\left(b^{\prime}\right):=\underset{x}{\operatorname{minimize}} c^{\top} x \\
&\left(P^{\prime}\right): \quad \text { subject to } A x=b^{\prime}(=b+\Delta b), \\
& x \geq \mathbf{0}
\end{aligned}
$$

Small constraint perturbation

- Suppose in $(P) x_{B}=B^{-1} b>0$ (i.e., non-degenerate). Then, $|\Delta b|$ small enough $\Longrightarrow x_{B}^{\prime}=B^{-1} b^{\prime}=x_{B}+B^{-1} \Delta b \geq 0$
B opt in $(P) \Longrightarrow \tilde{c}_{N}=\left(c_{N}^{T}-c_{B}^{T} B^{-1} N\right)^{T} \geq 0 \Longrightarrow B$ opt in $\left(P^{\prime}\right)$
- Perturbed optimal objective value locally linear near $b^{\prime}=b$

$$
v\left(b^{\prime}\right)=c_{B}^{T} x_{B}^{\prime}=c_{B}^{T} B^{-1} b^{\prime}=\left(y^{*}\right)^{T} b^{\prime}
$$

Shadow price theorem

If, for a given vector \boldsymbol{b}, the optimal BFS of (P) is non-degenerate, then its optimal objective value is differentiable at \boldsymbol{b}, with

$$
\nabla v(\boldsymbol{b})=\boldsymbol{y}^{*}
$$

Shadow price, illustration

Consider LP

$$
\begin{gathered}
x_{1}+x_{2}+x_{3}+x_{4} \\
\text { minimize } \\
\text { subject to } x_{1}+2 x_{2}-2 x_{3}+4 x_{4}=2 \\
-2 x_{1}+x_{2}+\quad x_{4}=3 \\
\\
x_{1}, \quad x_{2}, \quad x_{3}, \quad x_{4} \geq 0
\end{gathered}
$$

- Optimal basis $B=\left(\begin{array}{cc}2 & -2 \\ 1 & 0\end{array}\right), x^{*}=(0,3,2,0)^{T}$
- optimal objective value $v(b)=5$
- Optimal dual vector $\left(y^{*}\right)^{T}=c_{B}^{T} B^{-1}=\left(-\frac{1}{2}, 2\right)$

Shadow price, illustration

Figure: $v\left(b+\Delta b_{1} e_{1}\right)$ vs Δb_{1}

Figure: $v\left(b+\Delta b_{2} e_{2}\right)$ vs Δb_{2}

Consistent with shadow price theorem: $\nabla v(b)=y^{*}=\left(-\frac{1}{2}, 2\right)^{T}$

Large constraint perturbation

- Consider perturbed LP, with Δb large

$$
\begin{aligned}
& \underset{x}{\operatorname{minimize}} c^{\top} x \\
&\left(P\left(b^{\prime}\right)\right): \quad \text { subject to } A x=b^{\prime}(=b+\Delta b) \\
& x \geq \mathbf{0}
\end{aligned}
$$

- Let B be optimal basis of $P(b) . \bar{x}=\binom{\boldsymbol{B}^{-1} b^{\prime}}{\mathbf{0}^{n-m}}$ satisfies
- basic solution to $P\left(b^{\prime}\right)$
- not necessarily feasible to $P\left(b^{\prime}\right)$ when Δb large
- nonnegative reduced costs: $\tilde{c}_{N}=\left(c_{N}^{T}-c_{B}^{T} B^{-1} N\right)^{T} \geq 0$
- B initial basis for dual simplex method to solve $P\left(b^{\prime}\right)$

$$
\begin{align*}
& \underset{x}{\operatorname{minimize}}(\boldsymbol{c}+\Delta c)^{T} \boldsymbol{x} \\
& \text { subject to } \begin{aligned}
\boldsymbol{A} \boldsymbol{x} & =\boldsymbol{b}, \\
\boldsymbol{x} & \geq \mathbf{0} .
\end{aligned}
\end{align*}
$$

- $B=$ optimal basis for $P(0)$;
- $\bar{x}=\binom{\boldsymbol{B}^{-1} b}{\mathbf{0}^{n-m}}$ BFS in $P(\Delta c)$, but optimal?
- Sufficient condition for optimality:

$$
\tilde{\boldsymbol{c}}_{N}^{T}=\left(\boldsymbol{c}_{N}+\Delta c_{N}\right)^{T}-\left(\boldsymbol{c}_{B}+\Delta c_{B}\right)^{T} \boldsymbol{B}^{-1} \boldsymbol{N} \geq \mathbf{0}
$$

Perturbations in objective (non-basic) Sensitivity Analysis

- If only one non-basic component of \boldsymbol{c}_{N} is perturbed, i.e.,

$$
\Delta c=\binom{\Delta c_{B}}{\Delta c_{N}}=\binom{\mathbf{0}^{m}}{\varepsilon \boldsymbol{e}_{j}}, \quad \varepsilon \in \mathbb{R}
$$

- B optimal in the perturbed problem $P(\Delta c)$ if

$$
\begin{aligned}
\tilde{\boldsymbol{c}}_{N}^{T} & =\left(\boldsymbol{c}_{N}+\Delta c_{N}\right)^{T}-\left(\boldsymbol{c}_{B}+\Delta c_{B}\right)^{T} \boldsymbol{B}^{-1} \boldsymbol{N} \\
& =\left(\boldsymbol{c}_{N}+\varepsilon \boldsymbol{e}_{j}\right)^{T}-\left(\boldsymbol{c}_{B}\right)^{T} \boldsymbol{B}^{-1} \boldsymbol{N} \\
& =\underbrace{c_{N}^{T}-\boldsymbol{c}_{B}^{T} \boldsymbol{B}^{-1} \boldsymbol{N}}_{\text {unperturbed }}+\varepsilon \boldsymbol{e}_{j}^{T} \geq \mathbf{0}
\end{aligned}
$$

- Need to check only one entry:

$$
\left(\tilde{\boldsymbol{c}}_{N}\right)_{j}=\left(\boldsymbol{c}_{N}\right)_{j}+\varepsilon-\boldsymbol{c}_{B}^{T} \boldsymbol{B}^{-1} \boldsymbol{N}_{j} \geq 0
$$

Perturbations in objective (basic var) Sensitivity Analysis

- If only one basic component of \boldsymbol{c}_{B} is perturbed, i.e.,

$$
\Delta c=\binom{\Delta c_{B}}{\Delta c_{N}}=\binom{\varepsilon \boldsymbol{e}_{j}}{\mathbf{0}^{n-m}} \quad \varepsilon \in \mathbb{R}
$$

- B optimal in the perturbed problem $P(\Delta c)$ if

$$
\begin{aligned}
\tilde{\boldsymbol{c}}_{N}^{T} & =\left(\boldsymbol{c}_{N}+\Delta c_{N}\right)^{T}-\left(\boldsymbol{c}_{B}+\Delta c_{B}\right)^{T} \boldsymbol{B}^{-1} \boldsymbol{N} \\
& =\boldsymbol{c}_{N}^{T}-\left(\boldsymbol{c}_{B}+\varepsilon \boldsymbol{e}_{j}\right)^{T} \boldsymbol{B}^{-1} \boldsymbol{N} \\
& =\underbrace{\boldsymbol{c}_{N}^{T}-\boldsymbol{c}_{B}^{T} \boldsymbol{B}^{-1} \boldsymbol{N}}_{\text {unperturbed }}-\varepsilon e_{j}^{T} \boldsymbol{B}^{-1} \boldsymbol{N} \geq \mathbf{0}
\end{aligned}
$$

- $\varepsilon e_{j}^{T} \boldsymbol{B}^{-1} \boldsymbol{N}$ is dense; need to check the whole vector for $\tilde{\boldsymbol{c}}_{N} \geq \mathbf{0}$

$$
\begin{aligned}
\underset{x}{\operatorname{minimize}}(\boldsymbol{c}+\Delta c)^{T} \boldsymbol{x} & \\
\text { subject to } \quad \boldsymbol{A} \boldsymbol{x} & =\boldsymbol{b}, \\
\boldsymbol{x} & \geq \mathbf{0}
\end{aligned}
$$

- $B=$ optimal basis for $P(0)$;
- Δc large, sufficient condition for optimality need not hold

$$
\tilde{\boldsymbol{c}}_{N}^{T}=\left(\boldsymbol{c}_{N}+\Delta c_{N}\right)^{T}-\left(\boldsymbol{c}_{B}+\Delta c_{B}\right)^{T} \boldsymbol{B}^{-1} \boldsymbol{N} \nsupseteq \mathbf{0}
$$

- B corresponds to BFS in $(P(\Delta c)$; start simplex method with B

