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FormulationLP duality

Consider the primal LP written in standard form:

z∗ = infimum cTx ,

subject to Ax = b,

x ≥ 0.

(P)

where A ∈ Rm×n, c ∈ Rn, b ∈ Rm. The corresponding dual LP is

q∗ = supremum b
T
y ,

subject to ATy ≤ c ,

y ∈ Rm
.

(D)

(P) Minimization problem with n variables and m constraints.

(D) Maximization problem with m variables and n constraints.
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FormulationSimplex algorithm, review

◮ At a basic feasible solution (BFS), the variables can be ordered s.t.

x =

(
xB

xN

)

, A = (B,N), c =

(
cB

cN

)

,

where xB are basic variables and xN the non-basic variables.

◮ For a specific basis matrix B, we have that

xB = B−1b,

xN = 0n−m

◮ Simplex algorithm iteratively updates B, one column at a time, until
it terminates (optimality or objective value → −∞).
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FormulationIntroducing a dual vector

◮ Apply simplex algorithm, and assume an optimal basis B is found

◮ Optimal basis B means that the reduced costs are nonnegative:

c̃T
N = cT

N − cT
BB−1N ≥ (0n−m)T (1)

We introduce the (optimal dual) vector

y∗ := (cT
BB−1)T (2)

◮ By definition in (2), bT y∗ = (y∗)
T
b = cTB (B−1b) = cTB xB = cT x∗

◮ In addition, by optimality (i.e., (1)),

cT
B − (y∗)TB = 0m

cT
N − (y∗)TN ≥ (0n−m)T

}

=⇒ cT − (y∗)TA ≥ 0n

Thus, y∗ satisfies ATy∗ ≤ c and bT y∗ = cT x∗
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FormulationDual vector in dual LP

◮ y∗ := (cT
BB−1)T is feasible to dual problem (D)

q∗ = supremum b
T
y ,

subject to ATy ≤ c ,

y ∈ Rm
.

(D)

◮ AND, y∗ achieve bT y∗ = cT x∗ = z∗ = primal optimal obj. value

◮ As we will see, y∗ is indeed optimal to (D). Why?
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FormulationWeak duality

For any x ∈ Rn feasible to (P), and y ∈ Rm feasible to (D):

Ax = b,

x ≥ 0n
and

ATy ≤ c ,

y ∈ Rm ,

we have

cTx ≥ yTAx = yTb = b
T
y =⇒ cTx ≥ b

T
y

◮ z∗ ≥ q∗ (i.e., optimal primal obj. val ≥ optimal dual obj. val)

◮ We maximize b
T
y (s.t. AT y ≤ c) to get the best lower bound.
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FormulationThe dual LP

Dual problem = problem to find best primal objective lower bound

q∗ = supremum b
T
y ,

subject to ATy ≤ c ,

y ∈ Rm
.

(D)

◮ Under simple assumption, q∗ = z∗ (remember y∗ = (cTB B−1)
T
?)

◮ (D) = Lagrangian dual problem “dualizing” Ax = b in (P)

◮ Can define dual problems for all types of LPs (not just standard
form)
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FormulationDual problem, general construction

◮ Let A be the constraint matrix. Let aTi denote the i-th row of A,
and Aj denote the j-th column of A:

(primal problem) (dual problem)

minimize
x

cT x maximize
y

bT y

subject to aTi x ≥ bi , i ∈ M1, subject to yi ≥ 0, i ∈ M1,

aTi x ≤ bi , i ∈ M2, yi ≤ 0, i ∈ M2,

aTi x = bi , i ∈ M3, yi ∈ Rm, i ∈ M3,

xj ≥ 0, j ∈ N1 AT
j y ≤ cj , j ∈ N1,

xj ≤ 0, j ∈ N2 AT
j y ≥ cj , j ∈ N2,

xj ∈ Rn, j ∈ N3 AT
j y = cj , j ∈ N3.
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Duality TheoryDuality

◮ In class, we discuss properties of pair (P) and (D)

z∗ = infimum cTx ,

subject to Ax = b,

x ≥ 0.

(P)

q∗ = supremum b
T
y ,

subject to ATy ≤ c ,

y ∈ Rm
.

(D)

◮ Analogous properties hold for other types of LP primal and dual
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Duality TheoryWeak duality restated

Weak duality theorem
If x is a feasible solution to (P) and y is a feasible solution to (D),
then

cTx ≥ b
T
y .

Proof: See slide 6
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Duality TheoryWeak duality, unboundedness

Corollary

◮ If the optimal objective value of primal problem (P) is −∞,
then dual problem (D) is infeasible.

◮ If the optimal objective value of dual problem (D) is +∞, then
primal problem (P) is infeasible.

Proof: Show first statement by contrapositive. Suppose y ∈ Rm feasible
to (D). Then, z∗ ≥ bT y > −∞ by weak duality. Second statement
similar (home exercise).
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Duality TheoryWeak duality, sufficiency for optimality

Corollary
If x is a feasible solution to (P), y is a feasible solution to (D), and

cTx = b
T
y ,

then x is optimal in (P) and y is optimal in (D).

Proof: By statement assumption and weak duality theorem,

cT x = bT y ≤ cT x̃ , ∀x̃ : Ax̃ = b, x̃ ≥ 0,

bT y = cT x ≥ bT ỹ , ∀ỹ : AT ỹ ≤ c

Thus, x is optimal in (P) and y is optimal in (D).
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Duality TheoryStrong duality

Strong duality theorem
If both (P) and (D) are feasible, then

1. There exist x∗ optimal to (P) and y∗ optimal to (D)

2. cT x∗ = bT y∗ (so, z∗ = q∗)

Proof:

◮ (P) and (D) feasible implies simplex algorithm terminates with an
optimal basis matrix B associated with optimal x∗ (why?)

◮ Construct (y∗) = (cTB B−1)
T
, then AT y∗ ≤ c and cT x∗ = bT y∗

(see Slide 4). Then y∗ is optimal to (D) (why?)

◮ Hint: “why?” = weak duality
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Duality TheoryMinimum cut problem

Minimum cut problem:
What is minimum rail capacities (z∗) to destroy to prevent the Soviets
from sending troops, in the event of war?

z∗ = min
p,q

uTq

s.t. ATp + q ≥ 0
bTp ≥ 1
q ≥ 0

Figure: Western USSR railroad
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Duality TheoryMaximum flow problem

Maximum flow problem:
What is maximum number of troops (q∗) the Soviets can send?

q∗ = max
x,s

s

s.t. Ax + bs = 0
x ≤ u

x , s ≥ 0

Figure: Western USSR railroad
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Duality TheoryLP, matrix of possibilities

◮ For a LP, only three possibilities are allowed:

1. There is a finite optimal solution.
2. The optimal objective value is unbounded (e.g., −∞ for

minimization problem).
3. The problem is infeasible.

◮ A LP and its dual can have the following possibilities:

(D)\(P) finite optimum unbounded infeasible

finite optimum possible impossible impossible
unbounded impossible impossible possible
infeasible impossible possible possible
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Duality TheoryComplementary slackness, I

Complementary Slackness Theorem
Let x be feasible in (P) and y feasible in (D). Then

x optimal to (P)
y optimal to (D)

}

⇐⇒ xj(cj − AT
·j y) = 0, j = 1, . . . , n,

where A·j is column j of A.

Proof:

cT x = bT y
Ax=b
⇐==⇒ (cT x − yTAx) = 0

x≥0, Ax=b
⇐=====⇒

AT y≤c
xj(cj − AT

·j y) = 0, ∀j

Complementary slackness “=⇒” direction due to strong duality
Complementary slackness “⇐=” direction due to weak duality
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Duality TheoryComplementary slackness II

Complementary Slackness Theorem
Let x be feasible in (P) and y feasible in (D). Then

x optimal to (P)
y optimal to (D)

}

⇐⇒ xj(cj − AT
·j y) = 0, j = 1, . . . , n,

where A·j is column j of A.

For a primal-dual pair of optimal solutions x∗, y∗

◮ If there is slack in one constraint, then the respective variable in the
other problem is zero.

◮ If a variable is positive, then there is no slack in the respective
constraint in the other problem.
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Duality TheoryComplementary slackness, III

Consider primal and dual pair

(P’)

maximize
x

cT x

subject to Ax ≤ b

x ≥ 0

(D’)

minimize
y

bT y

subject to AT y ≥ c

y ≥ 0

Complementary Slackness Theorem Let x feasible to (P’) and y

feasible to (D’). Then,

{
x optimal to (P’)
y optimal to (D’)

⇐⇒

{
xj(cj − yTA·j) = 0, j = 1, . . . , n
yi (Ai·x − bi ) = 0, i = 1, . . . ,m
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Sensitivity AnalysisPerturbing equality constraint

Let B be optimal basis of

(P) :

v(b) := minimize
x

cT x

subject to Ax = b,

x ≥ 0.

Consider problem with perturbed equality constraint RHS b′:

(P ′) :

v(b′) := minimize
x

cT x

subject to Ax = b′(= b +∆b),

x ≥ 0.
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Sensitivity AnalysisSmall constraint perturbation

◮ Suppose in (P) xB = B−1b > 0 (i.e., non-degenerate). Then,

|∆b| small enough =⇒ x ′B = B−1b′ = xB + B−1∆b ≥ 0

B opt in (P) =⇒ c̃N = (cTN − cTB B−1N)T ≥ 0 =⇒ B opt in (P ′)

◮ Perturbed optimal objective value locally linear near b′ = b

v(b′) = cTB x ′B = cTB B−1b′ = (y∗)
T
b′

Shadow price theorem
If, for a given vector b, the optimal BFS of (P) is non-degenerate,
then its optimal objective value is differentiable at b, with

∇v(b) = y∗
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Sensitivity AnalysisShadow price, illustration

Consider LP

minimize x1 + x2 + x3 + x4
subject to x1 + 2x2 − 2x3 + 4x4 = 2

−2x1 + x2 + + x4 = 3
x1, x2, x3, x4 ≥ 0

◮ Optimal basis B =

(
2 −2
1 0

)

, x∗ = (0, 3, 2, 0)T

◮ optimal objective value v(b) = 5

◮ Optimal dual vector (y∗)T = cTB B−1 = (− 1
2 , 2)
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Sensitivity AnalysisShadow price, illustration
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Figure: v(b +∆b1e1) vs ∆b1
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Figure: v(b +∆b2e2) vs ∆b2

Consistent with shadow price theorem: ∇v(b) = y∗ = (− 1
2 , 2)

T
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Sensitivity AnalysisLarge constraint perturbation

◮ Consider perturbed LP, with ∆b large

(P(b′)) :

minimize
x

cT x

subject to Ax = b′(= b +∆b),

x ≥ 0.

◮ Let B be optimal basis of P(b). x̄ =

(
B−1b′

0n−m

)

satisfies

◮ basic solution to P(b′)
◮ not necessarily feasible to P(b′) when ∆b large
◮ nonnegative reduced costs: c̃N = (cTN − cTB B−1N)T ≥ 0

◮ B initial basis for dual simplex method to solve P(b′)
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Sensitivity AnalysisPerturbations in the objective

minimize
x

(c +∆c)Tx ,

subject to Ax = b,

x ≥ 0.

(P(∆c))

◮ B = optimal basis for P(0);

◮ x̄ =

(
B−1b

0n−m

)

BFS in P(∆c), but optimal?

◮ Sufficient condition for optimality:

c̃T
N = (cN +∆cN)

T − (cB +∆cB)
TB−1N ≥ 0
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Sensitivity AnalysisPerturbations in objective (non-basic)

◮ If only one non-basic component of cN is perturbed, i.e.,

∆c =

(
∆cB
∆cN

)

=

(
0m

εe j

)

, ε ∈ R

◮ B optimal in the perturbed problem P(∆c) if

c̃T
N = (cN +∆cN)

T − (cB +∆cB)
TB−1N

= (cN + εe j)
T − (cB)

TB−1N

= cTN − cT
BB−1N

︸ ︷︷ ︸

unperturbed

+ εeT
j ≥ 0

◮ Need to check only one entry:

(c̃N)j = (cN)j + ε− cT
BB−1N j ≥ 0
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Sensitivity AnalysisPerturbations in objective (basic var)

◮ If only one basic component of cB is perturbed, i.e.,

∆c =

(
∆cB
∆cN

)

=

(
εe j

0n−m

)

ε ∈ R

◮ B optimal in the perturbed problem P(∆c) if

c̃T
N = (cN +∆cN)

T − (cB +∆cB)
TB−1N

= cT
N − (cB + εe j)

TB−1N

= cT
N − cT

BB−1N
︸ ︷︷ ︸

unperturbed

− εeTj B−1N ≥ 0

◮ εeTj B−1N is dense; need to check the whole vector for c̃N ≥ 0
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Sensitivity AnalysisLarge perturbations in the objective

minimize
x

(c +∆c)Tx ,

subject to Ax = b,

x ≥ 0.

(P(∆c))

◮ B = optimal basis for P(0);

◮ ∆c large, sufficient condition for optimality need not hold

c̃T
N = (cN +∆cN)

T − (cB +∆cB)
TB−1N � 0

◮ B corresponds to BFS in (P(∆c); start simplex method with B
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