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Convex sets and functions Convex optimization

A set S CR" is a convex set if

xt, x> €8S,

1 2
\ 6(071)}:)\x +(1-Xx"€eS

A function f : R" — R is a convex function on the convex set S if

xt, x> €8S,

A e (0,1) } = £ (A7 + (1= 0)x%) S A (L= NF().
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Convex function, differentiable case Convex optimization

> dom(f) = S open convex set, f differentiable in S. Then,

f convex <= f(x) > f(X)+VF(X)"(x —X), Vx,x€S

> lllustration in 1-D (when S C R), for some fixed X € S
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Convex optimization Convex optimization

A convex optimization problem is

f* =infimum  f(x),

subjectto x €S,
f:R" — R is a convex function on S and S C R" is a convex set.

minimize  f(x)

A typical problem: . .
ypical p subject to  gi(x) <0, i=1,...,m

» f a convex function,

» g; convex functions, i =1,...,m,

» h; affine functions, j = 1,..., k. Why not convex h;'s (e.g., x> = 1)
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Local minimum = global minimum  Convex optimization

Consider convex optimization problem

minimize  f(x),

subjectto x €S,

x* local minimum of CP = x* global minimum of CP

Proof: Assume x* is local but not global minimum.
> If x* is not global minimum, then there exists y € S : f(y) < f(x*).

> For any 0 < 6 < 1, define z(0) = 6x* + (1 — O)y. z(A) € S and
f(z(9)) < f(x*) by convexity of S and f.

> For § < 1, f(z(9)) > f(x*), as x* is local minimum. Contradiction!

TMAO947 — Lecture 11 Convex optimization




Convex problem, non-differentiable objective Subgradient

> Most algorithms assume smoothness of objective f. E.g.,
gradient descent method: x*1 < x* — a, Vf(x¥)
requires that f is differentiable.
» For convex problem, we can relax the differentiability assumption
because of the subgradient method, to be detailed:
XKL xR — g pk,

where p¥ is a subgradient of f at x¥. But what is a subgradient?
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Subgradient Subgradient

Definition
Let S C R" be a nonempty convex set and let f : S — R be a convex
function. Then p € R" is called a subgradient of f at x € S if

f(x)>f(X)+pT(x—x), foranyxcS.

> Set of all subgradients to f at x called subdifferential of f at X as

of(x)={peR" | f(x) > f(X)+p'(x—X), forall x € S.}
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Subgradient, differentiable functions Subgradient

Lemma
Let S be a nonempty convex set and f : S — R a convex function.
Suppose that at X € int S, function f is differentiable, meaning that

Vf(x) exists. Then
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Subgradient, non-differentiable functions  Subgradient

When f is not differentiable at x, there could be multiple subgradients
f(x)
- f(x)+p] (x %)

[ f(x)+pJ (x — X)
P f(x) + ps (x — x)

Figure: Example of three subgradients, p;, p,, p; of f at the point X.
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Existence of subgradient Subgradient

» Do subgradients exist after all? Typically yes

Theorem
Let S C R" be a convex set and f : S — R be a convex function.
For each x € int S, there exists a vector p € R" such that

f(x)>f(X)+pT(x—x), foranyxeS.

> Statement holds for all X € intS, but not always at the boundary

» Can show theorem geometrically using epigraph and supporting
hyperplane theorem.
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Eplgraph Subgradient

Let SCR" and f : S — R. The epigraph of f with respect to S is

episf == {(x,0) € SxR | f(x)<a}, epigf CR™

The graph of function f (all points (x, f(x))) is in the boundary of
epis f.
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Epigraph, convex case Subgradient

Theorem
Let S C R” be a nonempty and convex set, and let f : S — R. Then
f is convex if and only if epis f is a convex set.

Proof: We show it on blackboard.
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Supporting hyperplane theorem Subgradient

Theorem

Let C C R” be a nonempty and convex set. Let x be a point on the
boundary of C. Then there exists a supporting hyperplane to C at
X, meaning that there exists v # 0" such that

vi(x —x) <0, forallxecC.

P
NUZ N
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Subgradient by supporting hyperplane, | Subgradient

» Forx € S, (%,f(x))T is a point at the boundary of epig f (convex).

. or((x\ [ X .
> Thus, there exists v : v ((z) <f()‘())> <0 V(x,z)€epigf.

f(x)

vix—x,z—f(x)) =0

» v defines subgradient only when hyperplane is “non-vertical”
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Subgradient by supporting hyperplane, Il Subgradient

> At (X, f(x)) apply supporting hyperplane theorem for epig f yields

V(x,2) € epig f, v (()Z() - (fé))) <0, somev£0

Write v = (u, t) € R™1, with u € R". For all (x,z) € epig f

v

u" (x—%)+t(z—f(X)) <0 = t <0 (otherwise LHS — 00 as z — 00).

> If t <O (i.e., hyperplane is non-vertical), replace z with f(x) yields
F(x) > F(X) — (%)T(x —%) = —% € Of(X).
» If t =0, then u”(x — X) <0 forall x € S. Impossible if X € int S.
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Subgradient, summary Subgradient

» Now we know subgradient exists for convex f over int S. But...

» How do we find a subgradient when we know at least one exists?

» We will see one (later in this lecture) when dealing with dual
function (in Lagrange duality)

» What is the use of a subgradient? We use it to define...

» Optimality condition
» Subgradient method

for convex problems with non-differentiable obj. functions.
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Optimality conditions with subgradients  Subgradient

Proposition (optimality of a convex function over R")
Let f : R" — R be a convex function. The following are equivalent:

1. f is globally minimized at x* € R”;
2. 0" € Of (x*);

*

X
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Subgradient methods Subgradient methods

» Analogous to gradient descent method, we move iterate in the
negative subgradient direction —p (i.e., x**1 < x¥ — a; p¥)

> But note: —p need not be a descent direction. (See the figure)

X2
f(x) =[xl +2|x|
P

> It however can move us "towards" to the optimal solution

—(P)T(x" = x) = F(x) = f(x) > 0
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Subgradient methods Subgradient methods

Subgradient direction p defines “cutting plane” for all x € S : f(x) < f(x¥),

f(x) > F(x)+p" (x—x¥) = p"x < p"x¥ (the halfspace containing x*)

-p 2/
/ i
/ -p
~,:" _7'_. x? xﬁ
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Subgradient method, unconstrained Subgradient methods

Subgradient method in unconstrained case
Step 0 Initiate x°, 2 = f(x%). k =0.
Step 1 Find a subgradient p* to f in x.
Step 2 Update x**1 = xk — q p¥ (ak is the step length in iteration k)
Step 3 Let £f<it = min{fk_, f(x*1)}

Step 4 If some termination criteria is fulfilled, stop. Otherwise, let
k:=k+1 and go to Step 1.
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Subgradient method, constrained Subgradient methods

A simple extention if we consider minimizing f over the convex set S.

Subgradient method (nontrivial convex feasible set)
Step 0 Initiate x° € S, £, = f(x°). k= 0.
Step 1 Find a subgradient p* to f in xX.
Step 2 Update x*™ = Projs (x* — ayp”)
Step 3 Let £5it = min{fk_ f(x**1)}

Step 4 If some termination criteria is fulfilled, stop. Otherwise, let
k:=k+1 and go to Step 1.
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Step length rules Subgradient methods

Examples of step size rules:

» Constant step size
Qp =

» Square summable but not summable

[ee] (oo}
g a2 < oo, g Qg = 0
k=0 k=0

For example: o = 2%

Depending on the step size rules, different convergence results can be
shown.
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Subgradient methods, summary Subgradient methods

» Now we know subgradient methods can solve convex optimization
problems with non-differentiable objective function. But...

> What are typical problems with non-differentiable objective?

> To use subgradient methods, we need to find subgradients. Are they
easy to find?

It turns out, Lagrange dual problem is naturally suited for subgradient
methods.
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The Lagrangian dual Lagrangian dual problem

Consider the Lagrangian relaxation of the problem to find

f* =infimum f(x),
subject to g(x) <0,
x € X.

We first construct the Lagrange function
L(x, p) = f(x) + " g(x),
and define the dual function as

q(p) = infimum L(x, p2)
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The Lagrangian [IE] Lagrangian dual problem

We then define the Lagrangian dual problem, which is to find

g = supremum q(s),
subjectto p >0

» As we have shown, the dual function g is always concave, so the
dual problem is a convex problem.

> g is however not in general differentiable.

> Subgradient methods are often utilized to solve the dual problem.
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Subgradients for the dual Lagrangian dual problem

But how do we find subgradients to g at a point u?

> In order to evaluate g(u), we need to solve the problem

I . I . T
q(p) = |nf)|(r€n)1<1m L(x,p) = |nf)|(r€n)%1m f(x)+p' g(x).

Let the solution set to this problem be

X(p) = argmin L(x, p)
xeX

> If we take any x € X(u), then g(x) will be a subgradient. (We will
show this soon)

> So when evaluating the dual function g at the point u, we obtain a
subgradient to gq.
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Subgradients for the dual Lagrangian dual problem

Proposition
Assume that X is nonempty and compact.Then the following hold.

a) Let p € R™ If x € X(w), then g(x) is a subgradient to g at u,
that is, g(x) € dq(p).

b) Let € R™. Then

9q(p) = conv {g(x) [ x € X(n)}.

Proof: See Proposition 6.20 in text.
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Subgradient method, dual prob. Lagrangian dual problem

Subgradient method for maximizing dual problem
Step 0 Initialize u°, g2, = q(p°), k :=0

Step 1 Solve the problem (dual function evaluation)

— infi k
q(p) = mf)l(ren)?m L(x, p")

Let the solution to the problem be x*.
g(x¥) is then a subgradient to g at p*.
Step 3 Update p** = [u* + axg(x*)] (nonnegative orthant projection)

Step 4 Let qu{ = max{gfes, a(p*™)}

Step 4 If some termination criteria is fulfilled, stop. Otherwise, let
k:=k+1 and go to Step 1.
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