Lecture 12 Integer linear optimization

Emil Gustavsson Fraunhofer-Chalmers Centre December 4, 2017

TMA947 - Lecture 12

Integer linear optimization

1 / 26

<ロト <部ト <きト <きト = 注

Integer linear programs

Consider linear programs with integrality constraint:

$$\begin{array}{ll} \underset{x}{\text{minimize}} & \mathbf{c}^{\mathrm{T}} \mathbf{x} \\ \text{subject to} & \mathbf{A} \mathbf{x} \leq \mathbf{b} \\ & \mathbf{x} \in \mathbb{Z}^{n} \end{array} \tag{1}$$

Often, consider special case of binary program

$$\begin{array}{ll} \underset{x}{\text{minimize}} & \mathbf{c}^{\mathrm{T}} \mathbf{x} \\ \text{subject to} & \mathbf{A} \mathbf{x} \leq \mathbf{b} \\ & \mathbf{x} \in \{0,1\}^n \end{array} \tag{2}$$

TMA947 - Lecture 12

Introduction

Linear integer model

TMA947 - Lecture 12

- Products or raw materials are indivisible
- ► Logical constraints: "if A then B"; "A or B"
- Fixed costs
- Combinatorics (sequencing, allocation)
- ► On/off-decision to buy, invest, hire, generate electricity, ...

0-1 binary decision variables can model logical decisions and relations:

- 0-1 binary variables: x = 1 means "true"; x = 0 means "false".
- If x then y: $x \le y$ ($x = 1 \implies y = 1$).
- "XOR": x + y = 1 (cannot be both "true" or both "false").
- Exactly one out of *n* must be true: $x_1 + x_2 + \ldots + x_n = 1$.
- At least 3 out of 5 must be chosen: $x_1 + x_2 + \ldots + x_5 \ge 3$.
- and more...

IP modeling

Disjoint feasible sets

IP modeling

Integer decision variables can model disjoint feasible sets:

For example, either $0 \le x \le 1$ or $5 \le x \le 8$:

```
x \ge 0

x \le 8

x \le 1 + 7y

x \ge 5y

y \in \{0, 1\}
```

Variable x may only take the values 2, 45, 78 or 107

$$\begin{aligned} x &= 2y_1 + 45y_2 + 78y_3 + 107y_4 \\ y_1 + y_2 + y_3 + y_4 &= 1 \\ y_1, y_2, y_3, y_4 \in \{0, 1\} \end{aligned}$$

TMA947 - Lecture 12

IP modeling

► Want to minimize an objective function with **fixed cost**:

$$f(x) = \begin{cases} 0 & \text{if } x = 0, \\ c_1 + c_2 x & \text{if } 0 < x \le M, \end{cases}$$

where $c_1 > 0$ is a fixed cost incurred as long as x > 0.

Modeling fixed cost using binary decision variable:

$$f(x, y) = \mathbf{c_1} \mathbf{y} + \mathbf{c_2} x$$
$$x \ge 0$$
$$x \le M y$$
$$y \in \{0, 1\}$$

TMA947 – Lecture 12

IP modeling

A Sudoku example

- ► Fill a square n × n grid with numbers 1...n
- Every number must occur exactly once in every row, column and box
- Huge number of reasonable configurations of numbers
- To the right is a supposedly very difficult sudoku

8	-	-	-	-	-	-	-	-
-	-	3	6	-	-	-	-	-
-	7	-	-	9	-	2	-	-
-	5	-	-	-	7	-	-	-
-	-	-	-	4	5	7	-	-
-	-	-	1	-	-	-	3	-
-	-	1	-	-	-	-	6	8
-	-	8	5	-	-	-	1	-
-	9	-	-	-	-	4	-	-

Sudoku cont.

Want to let $x_{iik} = 1$ iff the solution to the puzzle puts number k at row *i*, column *j*. Let a_{ii} be the given values of the puzzle we want to solve for $(i, j) \in \mathcal{D}$. minimize $\mathbf{c}^{\mathrm{T}}\mathbf{x}$ subject to $\sum_{\substack{j=1\\ n}} x_{ijk} = 1, \qquad i, k = 1, \dots, n,$ (1) $\sum x_{ijk} = 1, \qquad j, k = 1, \dots, n$ (2) $\sum_{j=1}^{ms} \sum_{j=1}^{mp} x_{ijk} = 1, \qquad s, p = 1, \dots, m, k = 1, \dots, n, \quad (3)$ i=m(s-1)+1 j=m(p-1)+1 $\sum_{k=1}^{n} x_{ijk} = 1, \qquad i, j = 1, \dots, n,$ $x_{ijk} = 1, \qquad (i, j) \in \mathcal{D}, k = a_{ij},$ $x_{ijk} \in \{0, 1\}, \quad i, j, k = 1, \dots, n.$ (4)(5)(6)

IP modeling

IP modeling

Sudoku cont

- (1)-(3) force every number to be used once in each row, column, and box.
- (4) forces each position to use exactly one number.
- (5) forces our solution to agree with the initial data.
- (6) Variables must be binary.
- The objective function lets me tune which solution I want to get.

Solution: 0.02 s 208 MIP simplex iterations 5 branch-and-bound nodes

8	1	2	7	5	3	6	4	9
9	4	3	6	8	2	1	7	5
6	7	5	4	9	1	2	8	3
1	5	4	2	3	7	8	9	6
3	6	9	8	4	5	7	2	1
2	8	7	1	6	9	5	3	4
5	2	1	9	7	4	3	6	8
4	3	8	5	2	6	9	1	7
7	9	6	3	1	8	4	5	2

In a sense no. For binary programs (2) we could in principle enumerate all 2ⁿ possible solutions.

The more general case (1) is not as straightforward, but clever finite enumerative schemes exist.

However, integer programming is NP-hard, meaning that is unlikely that a polynomial time algorithm exists. Computation cost grows very rapidly with problem size. Assign *n* persons to carry out *n* jobs # feasible solutions: *n*! Assume that a feasible solution is evaluated in 10^{-9} seconds

п	2	5	8	10	100
<i>n</i> !	2	120	$4.0\cdot10^4$	$3.6 \cdot 10^{6}$	$9.3 \cdot 10^{157}$
[time]	10 ⁻⁸ s	10 ⁻⁶ s	10 ⁻⁴ s	10 ⁻² s	10 ¹⁴² yrs

Complete enumeration of all solutions is **not** an efficient algorithm! An algorithm exists that solves this problem in time $O(n^3) \propto n^3$

п	2	5	8	10	100	1000
n ³	8	125	512	10 ³	10 ⁶	10 ⁹
[time]	10 ⁻⁸ s	10 ⁻⁷ s	10 ⁻⁶ s	$10^{-6}s$	10 ⁻³ s	1 s

Solution methods, overview

- General solution method (can be expensive but general)
 - Branch and bound method (divide-and-conquer)
 - Cutting plane method (polyhedral approximation)
 - Dynamic programming (divide-and-conquer)
 - Algebraic method (e.g., Graver bases)
- Exact solution method for special cases (efficient but not general)
 - Shortest path problem
 - Minimum cut problem
 - Minimum spanning tree problem
 - Bipartite matching problem
 - Assignment problem and more...
- Approximate solution methods
 - Usually more efficient; may or may not have error bounds

Branch and bound method, I

► Divide feasible set *F* into $F_1, F_2, ..., F_k$. Instead of solving $\begin{array}{c} \min_x c^T x \\ \text{s.t.} x \in F, \end{array}$ solve for all *i* $\begin{array}{c} \min_x c^T x \\ \text{s.t.} x \in F_i. \end{array}$

• May need to recursively divide F_i , i = 1, ..., k. This is branching.

• Dividing F all the way to singletons \rightarrow enumeration. Is it necessary?

Do we always need to divide F_i further when considering

$$(P_i): \text{ subproblem with } F_i: \begin{array}{c} \min_{x} c^T x \\ \text{s.t.} x \in F_i \end{array}?$$

We can stop further dividing F_i , if one of the following holds:

• (
$$P_i$$
) infeasible (i.e., $F_i = \emptyset$)

- Manage to solve (P_i). Possibly update "the currently best" objective value z_{best}.
- ▶ **Bounding:** If we find *b*(*P_i*), a lower bound of optimal objective value of (*P_i*), such that

$$b(P_i) \geq z_{\text{best}}.$$

BNB performance depends critically on quality of lower bound!

How to check if $F_i = \emptyset$? How to find lower bound $b(P_i)$?

▶ Suppose (*P_i*) and its LP relaxation take following form:

▶ Since feasible set of (LP_i) includes feasible set of (P_i) (i.e., F_i)

- (LP_i) infeasible $\implies (P_i)$ infeasible
- Integer optimal solution to $(LP_i) \implies$ optimal solution to (P_i)
- ▶ $z_{LP}^* \leq z_{IP}^*$. Thus, can set lower bound as $b(P_i) = z_{LP}^*$.

Bounding, Lagrangian dual relaxation

Solution methods

• For IP (P_i) with feasible set F_i :

$$\begin{array}{rl} z_{\mathsf{IP}}^* = & \min_{x} & c^{\mathsf{T}}x \\ & \mathsf{s.t.} & Ax \geq b \\ & Dx \geq d \\ & x \text{ integer} \end{array}$$

• Can also obtain lower bound $b(P_i)$ by "dualizing" some constraints:

$$\begin{array}{ccc} z_{\text{LD}}^* = & \max_{\mu} & q(\mu) \\ & \text{s.t.} & \mu \geq \mathbf{0} \end{array} \quad \text{with} \quad \begin{array}{c} q(\mu) = & \min_{x} & c^T x + \mu^T (b - A x) \\ & \text{s.t.} & D x \geq d, \ x \text{ integer} \end{array}$$

- Method is practical only when $q(\mu)$ is easy to evaluate.
- z^{*}_{LP} ≤ z^{*}_{LD} ≤ z^{*}_{IP} − lower bound by Lagrangian dual is always no worse than LP relaxation bound. Inequalities can be strict.

An example linear integer programming problem:

▶ Dots are (integer) feasible points. Let S denote feasible set.

Branch and bound, illustration (2)

- ▶ *F* is divided into $F_1 = \{x \mid x_2 \ge 3\} \cap S$ and $F_2 = \{x \mid x_2 \le 2\} \cap S$.
- $F_1 = \emptyset$. No need to consider further.
- ▶ F_2 : LP relaxation $x^2 = (0.75, 2)$, lower bound $b(P_2) = -3.25$.
- ▶ Split F_2 : $F_3 = \{x \mid x_1 \ge 1, x_2 \le 2\} \cap S$, $F_4 = \{x \mid x_1 \le 0, x_2 \le 2\} \cap S$.

Branch and bound, illustration (3)

- ▶ Split F_2 : $F_3 = \{x \mid x_1 \ge 1, x_2 \le 2\} \cap S$, $F_4 = \{x \mid x_1 \le 0, x_2 \le 2\} \cap S$
- ▶ F_3 : LP relaxation $x^3 = (1, 2)$, integer valued! Update $z_{\text{best}} = -3$.
- ▶ F_4 : LP relaxation $x^4 = (0, 1.5)$, $b(P_4) = -3 \ge z_{\text{best}}$, so remove F_4 .

Cutting plane

- LP relaxation has too large feasible set...
- Add cuts (i.e., valid inequalities satisfied by all IP feasible solutions but not LP relaxation solutions) to tighten the relaxation.
- We need one in this example. Which one?...... answer is $x_2 \leq 4$.

A fundamental theorem for MILP

What is the tightest LP relaxation? How good is it?

(IP)
$$\min_{x} c^T x$$

s.t. $s \in S$, (R) $\min_{x} c^T x$
s.t. $s \in conv(S)$.

▶ (R) = best convex relaxation of (IP), but is (R) a linear program?

Let **A** be a rational matrix, **b** a rational vector, and let $S = \{\mathbf{x} \in \mathbb{Z}^n | \mathbf{A}\mathbf{x} \leq \mathbf{b}\}$. Then $\operatorname{conv}(S)$ is a polyhedron. Also, the extreme points of $\operatorname{conv}(S)$ belong to S.

- (R) indeed LP relaxation of (IP)
- Solving (R) using simplex method also solves (IP)
- But, difficult to describe conv(S) conveniently

Let **A** be a rational matrix, **b** a rational vector, and let $S = \{\mathbf{x} \in \mathbb{Z}^n | \mathbf{A}\mathbf{x} \leq \mathbf{b}\}$. Then $\operatorname{conv}(S)$ is a polyhedron. Also, the extreme points of $\operatorname{conv}(S)$ belong to S.

Counterexample:

- $S = P \cap \mathbb{Z}^n$ with $P = \{x_1 \ge 0, x_2 \ge 0, x_2 \le \sqrt{2}x_1\}$
- $\operatorname{conv}(S) = \{x_1 \ge 0, x_2 \ge 0, x_2 < \sqrt{2}x_1\}$
- $\operatorname{conv}(S)$ not closed \implies $\operatorname{conv}(S)$ not polyhedron

Build better and better outer polyhedral approximations of conv(S). For polyhedral (outer) approximation Pⁱ : S = Pⁱ ∩ Zⁿ, solve

> LP relaxation with P^i : minimize $c^T x$ subject to $s \in P^i$.

- ▶ Let x^{LP} solve LP relaxation. If $x^{LP} \in S$, then we are done.
- Otherwise, generate a cut of the form $v^T x \leq d$ such that

$$v^T x^{LP} > d$$
 but $v^T x \leq d$ $\forall x \in S$.

► Update polyhedral approximation Pⁱ⁺¹ ← Pⁱ ∩ {x | v^Tx ≤ d}. Solve updated LP relaxation with Pⁱ⁺¹.

Generating a cut

- Assume polyhedral approximation $P^i = \{x \mid Ax = b, x \ge \mathbf{0}\}$
- ► $x^{\text{LP}} \in \underset{x \in P^{i}}{\operatorname{argmin}} c^{T}x$ with optimal basis *B*; Suppose $x_{j}^{\text{LP}} \notin \mathbb{Z}$

• Consider *j*-th row of
$$B^{-1}Ax = B^{-1}b \iff x_j + \sum_{k=m+1}^n v_k x_k = x_j^{LP}$$

►
$$x_j^{\text{LP}} \notin \mathbb{Z}, x_k^{\text{LP}} = 0 \text{ for } k > m+1 \implies x_j^{\text{LP}} + \sum_{k=m+1}^n \lfloor v_k \rfloor x_k^{\text{LP}} > \lfloor x_j^{\text{LP}} \rfloor$$

• On the other hand, for all $x \in P^i \cap \mathbb{Z}^n = S$

$$\begin{array}{lll} Ax = b & \Longrightarrow & x_j + \sum\limits_{k=m+1}^n v_k x_k = x_j^{\mathsf{LP}} \\ x \ge \mathbf{0} & \Longrightarrow & x_j + \sum\limits_{k=m+1}^n \lfloor v_k \rfloor x_k \le x_j^{\mathsf{LP}} \\ x \in \mathbb{Z}^n & \Longrightarrow & x_j + \sum\limits_{k=m+1}^n \lfloor v_k \rfloor x_k \le \lfloor x_j^{\mathsf{LP}} \rfloor \end{array}$$

Solution methods

- Branch and bound and cutting plane methods provide exact optimal solution, but sometimes we don't want to wait too long
- We can resort to approximate solution methods:
 - LP relaxation might not provide integer optimal solutions, but we can "round" them to integer feasible solutions.
 - Lagrangian dual relaxation might not provide feasible solutions, but from there we can construct suboptimal feasible solutions.
 - Randomized algorithms (e.g., genetic algorithms, simulated annealing) compare objective values at randomly chosen feasible solutions – not much theoretical guarantee but empirically they might find good suboptimal solutions.