
Lecture 12

Integer linear optimization

Emil Gustavsson
Fraunhofer-Chalmers Centre
December 4, 2017

TMA947 – Lecture 12 Integer linear optimization 1 / 26

Introduction
Integer linear programs

Consider linear programs with integrality constraint:

minimize
x

cTx

subject to Ax ≤ b

x ∈ Z
n

(1)

Often, consider special case of binary program

minimize
x

cTx

subject to Ax ≤ b

x ∈ {0, 1}n
(2)

TMA947 – Lecture 12 Integer linear optimization 2 / 26

Introduction
Linear integer model

Integer program

max zIP = x1 + 2x2
s.t. x1 + x2 ≤ 10 (1)

−x1 + 3x2 ≤ 9 (2)
x1 ≤ 7 (3)

x1, x2 ≥ 0 (4, 5)
x1, x2 integer

q = feasible
integer points

q q q q q q q q

q q q q q q q q

q q q q q q q q

q q q q q q q q

q q q q❜
x
∗

IP

✲

✻

✏✏✏✏✏✏✏✏✏✏✏✏✏✏
❅

❅
❅

❅
❅

❅
❅

❅❅❍❍❍❍❍❍
✁✁✕

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

x
∗

IP =

(

6
4

)

z∗IP = 14

x
∗

LP =

(

21/4
19/4

)

z∗LP = 143
4 > z∗IP

TMA947 – Lecture 12 Integer linear optimization 3 / 26

IP modeling
When are integer models needed/helpful?

◮ Products or raw materials are indivisible

◮ Logical constraints: “if A then B”; “A or B”

◮ Fixed costs

◮ Combinatorics (sequencing, allocation)

◮ On/off-decision to buy, invest, hire, generate electricity, ...

TMA947 – Lecture 12 Integer linear optimization 4 / 26

IP modeling
Logical constraints

0-1 binary decision variables can model logical decisions and relations:

◮ 0-1 binary variables: x = 1 means “true”; x = 0 means “false”.

◮ If x then y : x ≤ y (x = 1 =⇒ y = 1).

◮ “XOR”: x + y = 1 (cannot be both “true” or both “false”).

◮ Exactly one out of n must be true: x1 + x2 + . . .+ xn = 1.

◮ At least 3 out of 5 must be chosen: x1 + x2 + . . .+ x5 ≥ 3.

◮ and more...

TMA947 – Lecture 12 Integer linear optimization 5 / 26

IP modeling
Disjoint feasible sets

Integer decision variables can model disjoint feasible sets:

◮ For example, either 0 ≤ x ≤ 1 or 5 ≤ x ≤ 8:

x ≥ 0

x ≤ 8

x ≤ 1 + 7y

x ≥ 5y

y ∈ {0, 1}

◮ Variable x may only take the values 2, 45, 78 or 107

x = 2y1 + 45y2 + 78y3 + 107y4

y1 + y2 + y3 + y4 = 1

y1, y2, y3, y4 ∈ {0, 1}

TMA947 – Lecture 12 Integer linear optimization 6 / 26

IP modeling
Fixed costs

◮ Want to minimize an objective function with fixed cost:

f (x) =

{

0 if x = 0,

c1 + c2x if 0 < x ≤ M, c1

x

f

1
c2

where c1 > 0 is a fixed cost incurred as long as x > 0.

◮ Modeling fixed cost using binary decision variable:

f (x , y) = c1y + c2x

x ≥ 0

x ≤ My

y ∈ {0, 1}

TMA947 – Lecture 12 Integer linear optimization 7 / 26

IP modeling
A Sudoku example

◮ Fill a square n × n grid
with numbers 1 . . . n

◮ Every number must occur
exactly once in every row,
column and box

◮ Huge number of
reasonable configurations
of numbers

◮ To the right is a
supposedly very difficult
sudoku

8 - - - - - - - -
- - 3 6 - - - - -
- 7 - - 9 - 2 - -

- 5 - - - 7 - - -
- - - - 4 5 7 - -
- - - 1 - - - 3 -

- - 1 - - - - 6 8
- - 8 5 - - - 1 -
- 9 - - - - 4 - -

TMA947 – Lecture 12 Integer linear optimization 8 / 26

IP modeling
Sudoku cont.

Want to let xijk = 1 iff the solution to the puzzle puts number k at
row i , column j . Let aij be the given values of the puzzle we want
to solve for (i , j) ∈ D.

minimize cTx

subject to

n
∑

j=1

xijk = 1, i , k = 1, . . . , n, (1)

n
∑

i=1

xijk = 1, j , k = 1, . . . , n (2)

ms
∑

i=m(s−1)+1

mp
∑

j=m(p−1)+1

xijk = 1, s, p = 1, . . . ,m, k = 1, . . . , n, (3)

n
∑

k=1

xijk = 1, i , j = 1, . . . , n, (4)

xijk = 1, (i , j) ∈ D, k = aij , (5)
xijk ∈ {0, 1}, i , j , k = 1, . . . , n. (6)

TMA947 – Lecture 12 Integer linear optimization 9 / 26

IP modeling
Sudoku cont

◮ (1)–(3) force every
number to be used once
in each row, column, and
box.

◮ (4) forces each position
to use exactly one
number.

◮ (5) forces our solution to
agree with the initial
data.

◮ (6) Variables must be
binary.

◮ The objective function
lets me tune which
solution I want to get.

Solution:
0.02 s

208 MIP simplex iterations

5 branch-and-bound nodes

8 1 2 7 5 3 6 4 9
9 4 3 6 8 2 1 7 5
6 7 5 4 9 1 2 8 3

1 5 4 2 3 7 8 9 6
3 6 9 8 4 5 7 2 1
2 8 7 1 6 9 5 3 4

5 2 1 9 7 4 3 6 8
4 3 8 5 2 6 9 1 7
7 9 6 3 1 8 4 5 2

TMA947 – Lecture 12 Integer linear optimization 10 / 26

Complexity
Is integer optimization difficult?

◮ In a sense no. For binary programs (2) we could in principle
enumerate all 2n possible solutions.

◮ The more general case (1) is not as straightforward, but clever
finite enumerative schemes exist.

◮ However, integer programming is NP-hard, meaning that is
unlikely that a polynomial time algorithm exists. Computation
cost grows very rapidly with problem size.

TMA947 – Lecture 12 Integer linear optimization 11 / 26

Complexity
The combinatorial explosion

Assign n persons to carry out n jobs # feasible solutions: n!
Assume that a feasible solution is evaluated in 10−9 seconds

n 2 5 8 10 100

n! 2 120 4.0 · 104 3.6 · 106 9.3 · 10157
⌈time⌉ 10−8 s 10−6 s 10−4 s 10−2 s 10142 yrs

Complete enumeration of all solutions is not an efficient algorithm!
An algorithm exists that solves this problem in time O(n3) ∝ n3

n 2 5 8 10 100 1000

n3 8 125 512 103 106 109

⌈time⌉ 10−8 s 10−7 s 10−6 s 10−6s 10−3 s 1 s

TMA947 – Lecture 12 Integer linear optimization 12 / 26

Solution methods
Solution methods, overview

◮ General solution method (can be expensive but general)

◮ Branch and bound method (divide-and-conquer)
◮ Cutting plane method (polyhedral approximation)
◮ Dynamic programming (divide-and-conquer)
◮ Algebraic method (e.g., Graver bases)

◮ Exact solution method for special cases (efficient but not general)

◮ Shortest path problem
◮ Minimum cut problem
◮ Minimum spanning tree problem
◮ Bipartite matching problem
◮ Assignment problem and more...

◮ Approximate solution methods

◮ Usually more efficient; may or may not have error bounds

TMA947 – Lecture 12 Integer linear optimization 13 / 26

Solution methods
Branch and bound method, I

◮ Divide feasible set F into F1,F2, . . . ,Fk .

Instead of solving
min
x

cT x

s.t. x ∈ F ,
solve for all i

min
x

cT x

s.t. x ∈ Fi .

◮ May need to recursively divide Fi , i = 1, . . . , k . This is branching.

F

F1F2

F3F4

◮ Dividing F all the way to singletons → enumeration. Is it necessary?

TMA947 – Lecture 12 Integer linear optimization 14 / 26

Solution methods
Branch and bound method, II

Do we always need to divide Fi further when considering

(Pi): subproblem with Fi :
min
x

cT x

s.t. x ∈ Fi

?

We can stop further dividing Fi , if one of the following holds:

◮ (Pi) infeasible (i.e., Fi = ∅)
◮ Manage to solve (Pi). Possibly update “the currently best”

objective value zbest.

◮ Bounding: If we find b(Pi), a lower bound of optimal objective
value of (Pi), such that

b(Pi) ≥ zbest.

BNB performance depends critically on quality of lower bound!

TMA947 – Lecture 12 Integer linear optimization 15 / 26

Solution methods
Bounding, LP relaxation

How to check if Fi = ∅? How to find lower bound b(Pi)?

◮ Suppose (Pi) and its LP relaxation take following form:

(Pi)

z∗IP = min
x

cT x

s.t. Ax ≥ b

Dx ≥ d

x integer

(LPi)

z∗LP = min
x

cT x

s.t. Ax ≥ b

Dx ≥ d

x real

◮ Since feasible set of (LPi) includes feasible set of (Pi) (i.e, Fi)

◮ (LPi) infeasible =⇒ (Pi) infeasible
◮ Integer optimal solution to (LPi) =⇒ optimal solution to (Pi)
◮ z∗LP ≤ z∗IP. Thus, can set lower bound as b(Pi) = z∗LP.

TMA947 – Lecture 12 Integer linear optimization 16 / 26

Solution methods
Bounding, Lagrangian dual relaxation

◮ For IP (Pi) with feasible set Fi :

z∗IP = min
x

cT x

s.t. Ax ≥ b

Dx ≥ d

x integer

◮ Can also obtain lower bound b(Pi) by “dualizing” some constraints:

z∗LD = max
µ

q(µ)

s.t. µ ≥ 0
with

q(µ) = min
x

cT x + µT (b − Ax)

s.t. Dx ≥ d , x integer

◮ Method is practical only when q(µ) is easy to evaluate.

◮ z∗LP ≤ z∗LD ≤ z∗IP – lower bound by Lagrangian dual is always no
worse than LP relaxation bound. Inequalities can be strict.

TMA947 – Lecture 12 Integer linear optimization 17 / 26

Solution methods
Branch and bound, illustration (1)

◮ An example linear integer programming problem:

minimize x1 − 2x2

subject to −4x1 + 6x2 ≤ 9

x1 + x2 ≤ 4

x1, x2 ≥ 0

x1, x2 integer

0

1

2

3

1 2 3 4

 −c

x1

x2

◮ Dots are (integer) feasible points. Let S denote feasible set.

TMA947 – Lecture 12 Integer linear optimization 18 / 26

Solution methods
Branch and bound, illustration (2)

◮ F is divided into F1 = {x | x2 ≥ 3} ∩ S and F2 = {x | x2 ≤ 2} ∩ S .

◮ F1 = ∅. No need to consider further.

◮ F2: LP relaxation x2 = (0.75, 2), lower bound b(P2) = −3.25.
◮ Split F2: F3 = {x |x1 ≥ 1, x2 ≤ 2}∩S , F4 = {x |x1 ≤ 0, x2 ≤ 2}∩S .

0

1

2

3

1 2 3 4

F2 ,LP

−c

x2 ≥ 3

x2 ≤ 2

x1

x2

x2

 F

F1F2

x2 ≥ 3x2 ≤ 2

infeasible

b(P2) = −3.25

TMA947 – Lecture 12 Integer linear optimization 19 / 26

Solution methods
Branch and bound, illustration (3)

◮ Split F2: F3 = {x |x1 ≥ 1, x2 ≤ 2} ∩ S , F4 = {x |x1 ≤ 0, x2 ≤ 2} ∩ S

◮ F3: LP relaxation x3 = (1, 2), integer valued! Update zbest = −3.
◮ F4: LP relaxation x4 = (0, 1.5), b(P4) = −3 ≥ zbest, so remove F4.

0

1

2

3

1 2 3 4

F
3
, LP

−c

x2 ≥ 3

x2 ≤ 2

x1 ≤ 0
x1 ≥ 1

x1

x2

x3x4

F

F1F2

F3F4

x2 ≥ 3x2 ≤ 2

x1 ≥ 1x1 ≤ 0 infeasible

b(P2) = −3.25

integer sol
zbest = −3

b(P4) = −3
≥ zbest

TMA947 – Lecture 12 Integer linear optimization 20 / 26

Solution methods
Cutting plane

◮ LP relaxation has too large feasible set...

◮ Add cuts (i.e., valid inequalities satisfied by all IP feasible solutions
but not LP relaxation solutions) to tighten the relaxation.

◮ We need one in this example. Which one?......... answer is x2 ≤ 4.

q q q q q q q q

q q q q q q q q

q q q q q q q q

q q q q q q q q

q q q qq

x
∗

LP
❝

✲

✻

✏✏✏✏✏✏✏✏✏✏✏✏✏✏
❅

❅
❅

❅
❅

❅
❅

❅❅❍❍❍❍❍❍
✁✁✕

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6

TMA947 – Lecture 12 Integer linear optimization 21 / 26

Solution methods
A fundamental theorem for MILP

What is the tightest LP relaxation? How good is it?

(IP) min
x

cT x

s.t. s ∈ S ,
(R) min

x
cT x

s.t. s ∈ conv(S).

◮ (R) = best convex relaxation of (IP), but is (R) a linear program?

Let A be a rational matrix, b a rational vector, and let
S={x ∈ Z

n |Ax ≤ b}. Then conv(S) is a polyhedron. Also, the
extreme points of conv(S) belong to S .

◮ (R) indeed LP relaxation of (IP)

◮ Solving (R) using simplex method also solves (IP)

◮ But, difficult to describe conv(S) conveniently

TMA947 – Lecture 12 Integer linear optimization 22 / 26

Solution methods
Fundamental theorem for MILP, note

Let A be a rational matrix, b a rational vector, and let
S={x ∈ Z

n |Ax ≤ b}. Then conv(S) is a polyhedron. Also, the
extreme points of conv(S) belong to S .

Counterexample:

◮ S = P ∩ Z
n with P = {x1 ≥ 0, x2 ≥ 0, x2 ≤

√
2x1}

◮ conv(S) = {x1 ≥ 0, x2 ≥ 0, x2 <
√
2x1}

◮ conv(S) not closed =⇒ conv(S) not polyhedron

TMA947 – Lecture 12 Integer linear optimization 23 / 26

Solution methods
Cutting plane methods

◮ Build better and better outer polyhedral approximations of conv(S).
For polyhedral (outer) approximation P i : S = P i ∩ Z

n, solve

LP relaxation with P i :
minimize

x
cT x

subject to s ∈ P i .

◮ Let xLP solve LP relaxation. If xLP ∈ S , then we are done.

◮ Otherwise, generate a cut of the form vT x ≤ d such that

vT xLP > d but vT x ≤ d ∀x ∈ S .

◮ Update polyhedral approximation P i+1 ← P i ∩ {x | vT x ≤ d}.
Solve updated LP relaxation with P i+1.

TMA947 – Lecture 12 Integer linear optimization 24 / 26

Solution methods
Generating a cut

◮ Assume polyhedral approximation P i = {x | Ax = b, x ≥ 0}
◮ xLP ∈ argmin

x∈P i

cT x with optimal basis B ; Suppose xLPj /∈ Z

◮ Consider j-th row of B−1Ax = B−1b ⇐⇒ xj +
n
∑

k=m+1

vkxk = xLPj

◮ xLPj /∈ Z, xLPk = 0 for k > m + 1 =⇒ xLPj +
n
∑

k=m+1

⌊vk⌋xLPk > ⌊xLPj ⌋

◮ On the other hand, for all x ∈ P i ∩ Z
n = S

Ax = b =⇒ xj +
n
∑

k=m+1

vkxk = xLPj

x ≥ 0 =⇒ xj +
n
∑

k=m+1

⌊vk⌋xk ≤ xLPj

x ∈ Z
n =⇒ xj +

n
∑

k=m+1

⌊vk⌋xk ≤ ⌊xLPj ⌋

TMA947 – Lecture 12 Integer linear optimization 25 / 26

Solution methods
Approximate solution methods

◮ Branch and bound and cutting plane methods provide exact optimal
solution, but sometimes we don’t want to wait too long

◮ We can resort to approximate solution methods:

◮ LP relaxation might not provide integer optimal solutions, but
we can “round” them to integer feasible solutions.

◮ Lagrangian dual relaxation might not provide feasible solutions,
but from there we can construct suboptimal feasible solutions.

◮ Randomized algorithms (e.g., genetic algorithms, simulated
annealing) compare objective values at randomly chosen
feasible solutions – not much theoretical guarantee but
empirically they might find good suboptimal solutions.

TMA947 – Lecture 12 Integer linear optimization 26 / 26

	Introduction
	IP modeling
	Complexity
	Solution methods

