Lecture 12

Integer linear optimization

Emil Gustavsson

Fraunhofer-Chalmers Centre
December 4, 2017

Consider linear programs with integrality constraint:

$$
\begin{array}{ll}
\underset{x}{\operatorname{minimize}} & \mathbf{c}^{\mathrm{T}} \mathbf{x} \\
\text { subject to } & \mathbf{A x} \leq \mathbf{b} \tag{1}\\
& \mathbf{x} \in \mathbb{Z}^{n}
\end{array}
$$

Often, consider special case of binary program

$$
\begin{array}{ll}
\underset{x}{\operatorname{minimize}} & \mathbf{c}^{\mathrm{T}} \mathbf{x} \\
\text { subject to } & \mathbf{A x} \leq \mathbf{b} \tag{2}\\
& \mathbf{x} \in\{0,1\}^{n}
\end{array}
$$

Linear integer model

- Products or raw materials are indivisible
- Logical constraints: "if A then B "; " A or B "
- Fixed costs
- Combinatorics (sequencing, allocation)
- On/off-decision to buy, invest, hire, generate electricity, ...
$0-1$ binary decision variables can model logical decisions and relations:
- 0-1 binary variables: $x=1$ means "true"; $x=0$ means "false".
- If x then $y: x \leq y(x=1 \Longrightarrow y=1)$.
- "XOR": $x+y=1$ (cannot be both "true" or both "false").
- Exactly one out of n must be true: $x_{1}+x_{2}+\ldots+x_{n}=1$.
- At least 3 out of 5 must be chosen: $x_{1}+x_{2}+\ldots+x_{5} \geq 3$.
- and more...

Disjoint feasible sets

IP modeling

Integer decision variables can model disjoint feasible sets:

- For example, either $0 \leq x \leq 1$ or $5 \leq x \leq 8$:

$$
\begin{aligned}
& x \geq 0 \\
& x \leq 8 \\
& x \leq 1+7 y \\
& x \geq 5 y \\
& y \in\{0,1\}
\end{aligned}
$$

- Variable x may only take the values $2,45,78$ or 107

$$
\begin{aligned}
& x=2 y_{1}+45 y_{2}+78 y_{3}+107 y_{4} \\
& y_{1}+y_{2}+y_{3}+y_{4}=1 \\
& y_{1}, y_{2}, y_{3}, y_{4} \in\{0,1\}
\end{aligned}
$$

- Want to minimize an objective function with fixed cost:

$$
f(x)= \begin{cases}0 & \text { if } x=0 \\ c_{1}+c_{2} x & \text { if } 0<x \leq M\end{cases}
$$

where $c_{1}>0$ is a fixed cost incurred as long as $x>0$.

- Modeling fixed cost using binary decision variable:

$$
\begin{aligned}
f(x, y) & =\mathbf{c}_{1} y+c_{2} x \\
x & \geq 0 \\
x & \leq M y \\
y & \in\{0,1\}
\end{aligned}
$$

- Fill a square $n \times n$ grid with numbers $1 \ldots n$
- Every number must occur exactly once in every row, column and box
- Huge number of reasonable configurations of numbers
- To the right is a supposedly very difficult

8	-	-	-	-	-	-	-	-
-	-	3	6	-	-	-	-	-
-	7	-	-	9	-	2	-	-
-	5	-	-	-	7	-	-	-
-	-	-	-	4	5	7	-	-
-	-	-	1	-	-	-	3	-
-	-	1	-	-	-	-	6	8
-	-	8	5	-	-	-	1	-
-	9	-	-	-	-	4	-	-

Sudoku cont.

IP modeling

Want to let $x_{i j k}=1$ iff the solution to the puzzle puts number k at row i, column j. Let $a_{i j}$ be the given values of the puzzle we want to solve for $(i, j) \in \mathcal{D}$.

$$
\begin{array}{rlrl}
\text { minimize } \mathbf{c}^{\mathrm{T}} \mathbf{x} & & \\
\text { subject to } \sum_{j=1}^{n} x_{i j k} & =1, & & i, k=1, \ldots, n, \\
\sum_{i=1}^{n} x_{i j k} & =1, & & j, k=1, \ldots, n \\
\sum_{i=m(s-1)+1}^{m s} \sum_{j=m(p-1)+1}^{m p} x_{i j k} & =1, & & s, p=1, \ldots, m, k=1, \ldots, n, \\
\sum_{k=1}^{n} x_{i j k} & =1, & & i, j=1, \ldots, n, \\
x_{i j k} & =1, & & (i, j) \in \mathcal{D}, k=a_{i j}, \\
x_{i j k} & \in\{0,1\}, & i, j, k=1, \ldots, n .
\end{array}
$$

IP modeling

- (1)-(3) force every number to be used once in each row, column, and box.
- (4) forces each position to use exactly one number.
- (5) forces our solution to agree with the initial data.
- (6) Variables must be binary.
- The objective function lets me tune which solution I want to get.

Solution:

0.02 s

208 MIP simplex iterations 5 branch-and-bound nodes

8	1	2	7	5	3	6	4	9
9	4	3	6	8	2	1	7	5
6	7	5	4	9	1	2	8	3
1	5	4	2	3	7	8	9	6
3	6	9	8	4	5	7	2	1
2	8	7	1	6	9	5	3	4
5	2	1	9	7	4	3	6	8
4	3	8	5	2	6	9	1	7
7	9	6	3	1	8	4	5	2

- In a sense no. For binary programs (2) we could in principle enumerate all 2^{n} possible solutions.
- The more general case (1) is not as straightforward, but clever finite enumerative schemes exist.
- However, integer programming is NP-hard, meaning that is unlikely that a polynomial time algorithm exists. Computation cost grows very rapidly with problem size.

Assign n persons to carry out n jobs \# feasible solutions: n ! Assume that a feasible solution is evaluated in 10^{-9} seconds

n	2	5	8	10	100
$n!$	2	120	$4.0 \cdot 10^{4}$	$3.6 \cdot 10^{6}$	$9.3 \cdot 10^{157}$
\lceil time \rceil	$10^{-8} \mathrm{~s}$	$10^{-6} \mathrm{~s}$	$10^{-4} \mathrm{~s}$	$10^{-2} \mathrm{~s}$	$10^{142} \mathrm{yrs}$

Complete enumeration of all solutions is not an efficient algorithm! An algorithm exists that solves this problem in time $\mathcal{O}\left(n^{3}\right) \propto n^{3}$

n	2	5	8	10	100	1000
n^{3}	8	125	512	10^{3}	10^{6}	10^{9}
\lceil time \rceil	$10^{-8} \mathrm{~s}$	$10^{-7} \mathrm{~s}$	$10^{-6} \mathrm{~s}$	$10^{-6} \mathrm{~s}$	$10^{-3} \mathrm{~s}$	1 s

- General solution method (can be expensive but general)
- Branch and bound method (divide-and-conquer)
- Cutting plane method (polyhedral approximation)
- Dynamic programming (divide-and-conquer)
- Algebraic method (e.g., Graver bases)
- Exact solution method for special cases (efficient but not general)
- Shortest path problem
- Minimum cut problem
- Minimum spanning tree problem
- Bipartite matching problem
- Assignment problem and more...
- Approximate solution methods
- Usually more efficient; may or may not have error bounds
- Divide feasible set F into $F_{1}, F_{2}, \ldots, F_{k}$.

- May need to recursively divide $F_{i}, i=1, \ldots, k$. This is branching.

- Dividing F all the way to singletons \rightarrow enumeration. Is it necessary?

Do we always need to divide F_{i} further when considering

$$
\left(P_{i}\right): \text { subproblem with } F_{i}: \begin{array}{ll}
\min _{x} & c^{T} x \\
\text { s.t. } & x \in F_{i}
\end{array} ?
$$

We can stop further dividing F_{i}, if one of the following holds:

- $\left(P_{i}\right)$ infeasible (i.e., $F_{i}=\emptyset$)
- Manage to solve $\left(P_{i}\right)$. Possibly update "the currently best" objective value $z_{\text {best }}$.
- Bounding: If we find $b\left(P_{i}\right)$, a lower bound of optimal objective value of $\left(P_{i}\right)$, such that

$$
b\left(P_{i}\right) \geq z_{\text {best }} .
$$

BNB performance depends critically on quality of lower bound!

Bounding, LP relaxation

Solution methods

How to check if $F_{i}=\emptyset$? How to find lower bound $b\left(P_{i}\right)$?

- Suppose $\left(P_{i}\right)$ and its LP relaxation take following form:

$$
\begin{aligned}
& z_{\mathrm{PP}}^{*}=\min _{x} c^{\top} x \\
& z_{\mathrm{LP}}^{*}=\min _{x} c^{\top} x \\
& \left(P_{i}\right) \\
& \text { s.t. } A x \geq b \\
& D x \geq d \\
& x \text { integer } \\
& \text { s.t. } A x \geq b \\
& D x \geq d \\
& x \text { real }
\end{aligned}
$$

- Since feasible set of $\left(L P_{i}\right)$ includes feasible set of $\left(P_{i}\right)$ (i.e, $\left.F_{i}\right)$
- $\left(L P_{i}\right)$ infeasible $\Longrightarrow\left(P_{i}\right)$ infeasible
- Integer optimal solution to $\left(L P_{i}\right) \Longrightarrow$ optimal solution to $\left(P_{i}\right)$
- $z_{\mathrm{LP}}^{*} \leq z_{\mathrm{IP}}^{*}$. Thus, can set lower bound as $b\left(P_{i}\right)=z_{\mathrm{LP}}^{*}$.
- For IP $\left(P_{i}\right)$ with feasible set F_{i} :

$$
\begin{aligned}
z_{\mathrm{PP}}^{*}=\min _{x} & c^{\top} x \\
\text { s.t. } & A x \geq b \\
& D x \geq d \\
& x \text { integer }
\end{aligned}
$$

- Can also obtain lower bound $b\left(P_{i}\right)$ by "dualizing" some constraints:

$$
\begin{aligned}
\left.z_{\mathrm{LD}}^{*}=\begin{array}{cl}
\max _{\mu} & q(\mu) \\
\text { s.t. } & \mu \geq \mathbf{0}
\end{array} \quad \text { with } \quad q(\mu)=\begin{array}{cl}
\min _{x} & c^{T} x+\mu^{T}(b-A x) \\
\text { s.t. } & D x \geq d, x \text { integer }
\end{array}, \begin{array}{ll}
&
\end{array}\right)
\end{aligned}
$$

- Method is practical only when $q(\mu)$ is easy to evaluate.
- $z_{\mathrm{LP}}^{*} \leq z_{\mathrm{LD}}^{*} \leq z_{\mathrm{PP}}^{*}$ - lower bound by Lagrangian dual is always no worse than LP relaxation bound. Inequalities can be strict.

Branch and bound, illustration (1)

Solution methods

- An example linear integer programming problem:

$$
\begin{aligned}
\operatorname{minimize} & x_{1}-2 x_{2} \\
\text { subject to } & -4 x_{1}+6 x_{2} \leq 9 \\
& x_{1}+x_{2} \leq 4 \\
& x_{1}, x_{2} \geq 0 \\
& x_{1}, x_{2} \text { integer }
\end{aligned}
$$

- Dots are (integer) feasible points. Let S denote feasible set.

Branch and bound, illustration (2)

Solution methods

- F is divided into $F_{1}=\left\{x \mid x_{2} \geq 3\right\} \cap S$ and $F_{2}=\left\{x \mid x_{2} \leq 2\right\} \cap S$.
- $F_{1}=\emptyset$. No need to consider further.
- F_{2} : LP relaxation $x^{2}=(0.75,2)$, lower bound $b\left(P_{2}\right)=-3.25$.
- Split $F_{2}: F_{3}=\left\{x \mid x_{1} \geq 1, x_{2} \leq 2\right\} \cap S, F_{4}=\left\{x \mid x_{1} \leq 0, x_{2} \leq 2\right\} \cap S$.

Branch and bound, illustration (3)

Solution methods

- Split $F_{2}: F_{3}=\left\{x \mid x_{1} \geq 1, x_{2} \leq 2\right\} \cap S, F_{4}=\left\{x \mid x_{1} \leq 0, x_{2} \leq 2\right\} \cap S$
- F_{3} : LP relaxation $x^{3}=(1,2)$, integer valued! Update $z_{\text {best }}=-3$.
- F_{4} : LP relaxation $x^{4}=(0,1.5), b\left(P_{4}\right)=-3 \geq z_{\text {best }}$, so remove F_{4}.

$$
b\left(P_{4}\right)=-3 \quad \text { integer sol }
$$

$$
\geq z_{\text {best }} \quad z_{\text {best }}=-3
$$

- LP relaxation has too large feasible set...
- Add cuts (i.e., valid inequalities satisfied by all IP feasible solutions but not LP relaxation solutions) to tighten the relaxation.
- We need one in this example. Which one?......... answer is $x_{2} \leq 4$.

A fundamental theorem for MILP

Solution methods

What is the tightest LP relaxation? How good is it?
(IP) $\begin{array}{ll}\min _{x}^{x} & c^{T} x \\ \text { s.t. } & s \in S,\end{array}$
(R) $\begin{array}{ll}\min _{x}^{x} & c^{T} x \\ \text { s.t. } & s \in \operatorname{conv}(S) .\end{array}$

- (R) = best convex relaxation of (IP), but is (R) a linear program?

Let \mathbf{A} be a rational matrix, \mathbf{b} a rational vector, and let $S=\left\{\mathbf{x} \in \mathbb{Z}^{n} \mid \mathbf{A x} \leq \mathbf{b}\right\}$. Then $\operatorname{conv}(S)$ is a polyhedron. Also, the extreme points of $\operatorname{conv}(S)$ belong to S.

- (R) indeed LP relaxation of (IP)
- Solving (R) using simplex method also solves (IP)
- But, difficult to describe conv(S) conveniently

Let \mathbf{A} be a rational matrix, \mathbf{b} a rational vector, and let $S=\left\{\mathbf{x} \in \mathbb{Z}^{n} \mid \mathbf{A x} \leq \mathbf{b}\right\}$. Then $\operatorname{conv}(S)$ is a polyhedron. Also, the extreme points of $\operatorname{conv}(S)$ belong to S.

Counterexample:

- $S=P \cap \mathbb{Z}^{n}$ with $P=\left\{x_{1} \geq 0, x_{2} \geq 0, x_{2} \leq \sqrt{2} x_{1}\right\}$
- $\operatorname{conv}(S)=\left\{x_{1} \geq 0, x_{2} \geq 0, x_{2}<\sqrt{2} x_{1}\right\}$
- conv(S) not closed $\Longrightarrow \operatorname{conv}(S)$ not polyhedron
- Build better and better outer polyhedral approximations of $\operatorname{conv}(S)$. For polyhedral (outer) approximation $P^{i}: S=P^{i} \cap \mathbb{Z}^{n}$, solve

$$
\text { LP relaxation with } P^{i}: \quad \begin{gathered}
\underset{x}{\operatorname{minimize}} \\
\text { subject to }
\end{gathered} \quad \begin{aligned}
& c^{T} x \\
& s \in P^{i} .
\end{aligned}
$$

- Let x^{LP} solve LP relaxation. If $x^{\mathrm{LP}} \in S$, then we are done.
- Otherwise, generate a cut of the form $v^{\top} x \leq d$ such that

$$
v^{\top} x^{\mathrm{LP}}>d \quad \text { but } \quad v^{\top} x \leq d \quad \forall x \in S
$$

- Update polyhedral approximation $P^{i+1} \leftarrow P^{i} \cap\left\{x \mid v^{T} x \leq d\right\}$. Solve updated LP relaxation with P^{i+1}.
- Assume polyhedral approximation $P^{i}=\{x \mid A x=b, x \geq \mathbf{0}\}$
- $x^{L P} \in \underset{x \in P^{i}}{\operatorname{argmin}} c^{T} x$ with optimal basis B; Suppose $x_{j}^{L P} \notin \mathbb{Z}$
- Consider j-th row of $B^{-1} A x=B^{-1} b \Longleftrightarrow x_{j}+\sum_{k=m+1}^{n} v_{k} x_{k}=x_{j}^{\mathrm{LP}}$
- $x_{j}^{\mathrm{LP}} \notin \mathbb{Z}, x_{k}^{\mathrm{LP}}=0$ for $k>m+1 \Longrightarrow x_{j}^{\mathrm{LP}}+\sum_{k=m+1}^{n}\left\lfloor v_{k}\right\rfloor x_{k}^{\mathrm{LP}}>\left\lfloor x_{j}^{\mathrm{LP}}\right\rfloor$
- On the other hand, for all $x \in P^{i} \cap \mathbb{Z}^{n}=S$

$$
\begin{aligned}
A x=b & \Longrightarrow x_{j}+\sum_{k=m+1}^{n} v_{k} x_{k}=x_{j}^{\mathrm{LP}} \\
x \geq \mathbf{0} & \Longrightarrow x_{j}+\sum_{k=m+1}^{n}\left\lfloor v_{k}\right\rfloor x_{k} \leq x_{j}^{\mathrm{LP}} \\
x \in \mathbb{Z}^{n} & \Longrightarrow x_{j}+\sum_{k=m+1}^{n}\left\lfloor v_{k}\right\rfloor x_{k} \leq\left\lfloor x_{j}^{\llcorner\mathrm{LP}}\right\rfloor
\end{aligned}
$$

- Branch and bound and cutting plane methods provide exact optimal solution, but sometimes we don't want to wait too long
- We can resort to approximate solution methods:
- LP relaxation might not provide integer optimal solutions, but we can "round" them to integer feasible solutions.
- Lagrangian dual relaxation might not provide feasible solutions, but from there we can construct suboptimal feasible solutions.
- Randomized algorithms (e.g., genetic algorithms, simulated annealing) compare objective values at randomly chosen feasible solutions - not much theoretical guarantee but empirically they might find good suboptimal solutions.

