Lecture 13

Feasible direction methods

Emil Gustavsson
Fraunhofer-Chalmers Centre
December 6, 2017

Constrained optimization problem

- Consider the problem to find

$$
\begin{align*}
f^{*}= & \text { infimum } f(x), \tag{1a}\\
& \text { subject to } x \in X, \tag{1b}
\end{align*}
$$

$X \subseteq \mathbb{R}^{n}$ nonempty, closed \& convex; $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is C^{1} on X

- Solution idea: generalize unconstrained optimization methods

Feasible-direction descent methods, overview

Step 0. Determine a starting point $x_{0} \in X$. Set $k:=0$
Step 1. Find a feasible descent search direction $p_{k} \in \mathbb{R}^{n}$, such that there exists $\bar{\alpha}>0$ satisfying

- $x_{k}+\alpha p_{k} \in X, \forall \alpha \in(0, \bar{\alpha}]$
- $f\left(x_{k}+\alpha p_{k}\right)<f\left(x_{k}\right), \forall \alpha \in(0, \bar{\alpha}]$

Step 2. Determine a step length $\alpha_{k}>0$ such that $f\left(x_{k}+\alpha_{k} p_{k}\right)<f\left(x_{k}\right)$ and $x_{k}+\alpha_{k} p_{k} \in X$

Step 3. Let $x_{k+1}:=x_{k}+\alpha_{k} p_{k}$
Step 4. If a termination criterion is fulfilled, then stop! Otherwise, let $k:=k+1$ and go to Step 1

Notes

- Just as local as methods for unconstrained optimization
- Search direction often of the form $p_{k}=y_{k}-x_{k}$, where $y_{k} \in X$ solves an (easy) approximate problem
- Line searches analogous to unconstrained case
- Termination criteria and descent based on first-order optimality and/or fixed-point theory ($p_{k} \approx 0^{n}$)

Feasible-direction descent methods, polyhedral feasible set

- For general X, finding feasible descent direction and step length is difficult (e.g., systems of nonlinear equations)
- X polyhedral \Longrightarrow search directions and step length easy to find
- X polyhedral \Longrightarrow local mininma are KKT points
- Methods (to be discussed) will find KKT points
- Frank-Wolfe method based on first-order approximation of f at x_{k} :
- First-order (necessary) optimality conditions:
x^{*} local minimum of f on $X \Longrightarrow \nabla f\left(x^{*}\right)^{T}\left(x-x^{*}\right) \geq 0, \quad x \in X$
x^{*} local minimum of f on $X \Longrightarrow \underset{x \in X}{\operatorname{minimize}} \nabla f\left(x^{*}\right)^{T}\left(x-x^{*}\right)=0$
- Satisfying necessary conditions $\nRightarrow x^{*}$ local minimum
- Violate necessary conditions \Rightarrow can construct feasible descent dir.
- At iterate $x_{k} \in X$, if

$$
\left\{\begin{array}{l}
\underset{y \in X}{\operatorname{minimize}} \nabla f\left(x_{k}\right)^{T}\left(y-x_{k}\right)<0, \\
y_{k} \in \underset{y \in X}{\operatorname{argmin}} \nabla f\left(x_{k}\right)^{T}\left(y-x_{k}\right)
\end{array}\right.
$$

Then,

$$
p_{k}:=y_{k}-x_{k} \text { is a feasible descent direction }
$$

- Solve LP to find y_{k} (and p_{k}), since X polyhedral
- Search direction towards an extreme point of X
- This is the basis of the Frank-Wolfe algorithm
- If LP has finite optimum $y_{k} \Longrightarrow$ search direction $p_{k}=y_{k}-x_{k}$
- If LP obj. val. unbounded, simplex method still finds search dir.
- In this lecture, we assume X bounded for simplicity

The search-direction problem
Frank-Wolfe

Step 0 . Find $x_{0} \in X$ (e.g. any extreme point in X). Set $k:=0$
Step 1. Find an optimal solution y_{k} to the problem to

$$
\begin{equation*}
\underset{y \in X}{\operatorname{minimize}} \quad z_{k}(y):=\nabla f\left(x_{k}\right)^{T}\left(y-x_{k}\right) \tag{2}
\end{equation*}
$$

Let $p_{k}:=y_{k}-x_{k}$ be the search direction
Step 2. Line search: (approximately) minimize $f\left(x_{k}+\alpha p_{k}\right)$ over $\alpha \in[0,1]$. Let α_{k} be the step length

Step 3. Let $x_{k+1}:=x_{k}+\alpha_{k} p_{k}$
Step 4. If, for example, $z_{k}\left(y_{k}\right)$ or α_{k} is close to zero, then terminate! Otherwise, let $k:=k+1$ and go to Step 1

- Suppose $X \subset \mathbb{R}^{n}$ nonempty polytope; f in C^{1} on X
- In Step 2 (line search), we either use an exact line search or the Armijo step length rule
- Then: the sequence $\left\{x_{k}\right\}$ is bounded and every limit point (at least one exists) is stationary;
- If f is convex on X, then every limit point is globally optimal

- Suppose f is convex on X. Then for each $k, \forall y \in X$ it holds that

$$
\begin{aligned}
f(y) & \geq f\left(x_{k}\right)+\nabla f\left(x_{k}\right)^{T}\left(y-x_{k}\right) \quad \text { (since } f \text { convex) } \\
& \left.\geq f\left(x_{k}\right)+\nabla f\left(x_{k}\right)^{T}\left(y_{k}-x_{k}\right) \quad \text { (by definition of } y_{k}\right)
\end{aligned}
$$

implying that

$$
f^{*} \geq \underbrace{f\left(x_{k}\right)+\nabla f\left(x_{k}\right)^{T}\left(y_{k}-x_{k}\right)}_{\text {lower bound of } f^{*}}
$$

- Keep the best lower bound (LBD) up to current iteration. That is,

$$
\operatorname{LBD} \leftarrow \max \left\{\operatorname{LBD}, f\left(x_{k}\right)+\nabla f\left(x_{k}\right)^{T}\left(y_{k}-x_{k}\right)\right\}
$$

In step 4, terminate if $f\left(x_{k}\right)-L B D$ is small enough

- Frank-Wolfe uses linear approximations-works best for almost linear problems
- For highly nonlinear problems, the approximation is bad-the optimal solution may be far from an extreme point
- In order to find a near-optimum requires many iterations-the algorithm is slow
- Extreme points in previous iterations forgotten; can speed up by storing and using previous extreme points
- Representation Theorem (for polytopes):
- $P=\left\{x \in \mathbb{R}^{n} \mid A x=b ; x \geq 0^{n}\right\}$, nonempty and bounded
- $V=\left\{v^{1}, \ldots, v^{K}\right\}$ be the set of extreme points of P

Then,

$$
x \in P \quad \Longleftrightarrow \quad x=\sum_{i=1}^{K} \alpha_{i} v^{i}, \quad \text { for some } \alpha_{1}, \ldots, \alpha_{k} \geq 0, \quad \sum_{i=1}^{K} \alpha_{i}=1
$$

- Simplicial decomposition idea: use some (hopefully few) extreme points to describe optimal solution x^{*}

$$
x^{*}=\sum_{i \in \mathcal{K}} \alpha_{i} v^{i}, \quad|\mathcal{K}| \ll K
$$

- Extreme points of feasible set v^{1}, \ldots, v^{K}
- At each iteration k, maintain "working set" $\mathcal{P}_{k} \subseteq\left\{v^{1}, v^{2}, \ldots, v^{k}\right\}$
- Check for stationarity of $x_{k} \in \mathcal{P}_{k}$ (just like Frank-Wolfe)
- x_{k} stationary \Longrightarrow terminate
- else, identify (possibly new) extreme pt. $y_{k} ; \mathcal{P}_{k+1}=\mathcal{P}_{k} \cup\left\{y_{k}\right\}$
- Optimize f over $\operatorname{conv}\left(\mathcal{P}_{k+1} \cup\left\{x_{k}\right\}\right)$ for x_{k+1}
- restricted master problem, multi-dimensional line search, etc

Step 0 . Find $x_{0} \in X$, for example any extreme point in X. Set $k:=0$. Let $\mathcal{P}_{0}:=\emptyset$

Step 1. Let y_{k} be an optimal solution to the LP problem

$$
\underset{y \in X}{\operatorname{minimize}} \quad z_{k}(y):=\nabla f\left(x_{k}\right)^{T}\left(y-x_{k}\right)
$$

$$
\text { Let } \mathcal{P}_{k+1}:=\mathcal{P}_{k} \cup\left\{y_{k}\right\}
$$

Step 2. $\operatorname{Min} f$ over $\operatorname{conv}\left(\left\{x_{k}\right\} \cup \mathcal{P}_{k+1}\right)$. Let $\left(\mu_{k+1}, \nu_{k+1}\right) \in \mathbb{R} \times \mathbb{R}^{\left|\mathcal{P}_{k+1}\right|}$ minimizes restricted master problem (RMP)

$$
\begin{array}{cl}
\underset{(\mu, \nu)}{\operatorname{minimize}} & f\left(\mu x_{k}+\sum_{y_{i} \in \mathcal{P}_{k+1}} \nu(i) y_{i}\right) \\
\text { subject to } & \mu+\sum_{i=1}^{\left|\mathcal{P}_{k+1}\right|} \nu(i)=1, \\
& \mu, \nu(i) \geq 0, \quad i=1,2, \ldots,\left|\mathcal{P}_{k+1}\right|
\end{array}
$$

Step 3. Let $x_{k+1}:=\mu_{k+1} x_{k}+\sum_{i=1}^{\left|\mathcal{P}_{k+1}\right|} \nu_{k+1}(i) y_{i}$
Step 4. If $z_{k}\left(y_{k}\right) \approx 0$ or if $\mathcal{P}_{k+1}=\mathcal{P}_{k}$ then terminate (why?) Otherwise, let $k:=k+1$ and go to Step 1

- Basic version keeps adding extreme points: $\mathcal{P}_{k+1} \leftarrow \mathcal{P}_{k} \cup\left\{y_{k}\right\}$
- Alternative: drop members of \mathcal{P}_{k} with small weights in RMP; or set upper bound on $\left|\mathcal{P}_{k}\right|$
- Special case: $\left|\mathcal{P}_{k}\right|=1 \Longrightarrow$ Frank-Wolfe (FW) algorithm!
- Simplicial decomposition (SD) requires fewer iterations than FW
- Unfortunately, solving RMP is more difficult than line search
- but RMP feasible set structured - unit simplex

Figure: Example implementation of SD. Starting at $x_{0}=(1,-1)^{T}$, and with \mathcal{P}_{0} as the extreme point at $(2,0)^{T},\left|\mathcal{P}_{k}\right| \leq 2$.

Figure: Example implementation of SD. Starting at $x_{0}=(1,-1)^{T}$, and with \mathcal{P}_{0} as the extreme point at $(2,0)^{T},\left|\mathcal{P}_{k}\right| \leq 2$.

Figure: Example implementation of SD. Starting at $x_{0}=(1,-1)^{T}$, and with \mathcal{P}_{0} as the extreme point at $(2,0)^{T},\left|\mathcal{P}_{k}\right| \leq 2$.

Figure: Example implementation of SD. Starting at $x_{0}=(1,-1)^{T}$, and with \mathcal{P}_{0} as the extreme point at $(2,0)^{T},\left|\mathcal{P}_{k}\right| \leq 2$.

Figure: Example implementation of SD. Starting at $x_{0}=(1,-1)^{T}$, and with \mathcal{P}_{0} as the extreme point at $(2,0)^{T},\left|\mathcal{P}_{k}\right| \leq 2$.

- It does at least as well as the Frank-Wolfe algorithm: line segment [x_{k}, y_{k}] feasible in RMP
- SD converges in finite number of iterations if all of following hold
- x^{*} unique
- RMP solved exactly
- $\left|\mathcal{P}_{k}\right|$ large enough (to represent x^{*})
- Much more efficient than the Frank-Wolfe algorithm in practice (consider example solved by FW and SD)
- Can solve the RMPs efficiently, since the constraints are simple

The gradient projection algorithm
Gradient projection

- The gradient projection algorithm based on:

$$
x^{*} \in X \text { stationary } \Longleftrightarrow x^{*}=\operatorname{Proj}_{x}\left[x^{*}-\alpha \nabla f\left(x^{*}\right)\right], \quad \forall \alpha>0
$$

- x not stationary; $p=\operatorname{Proj}_{x}[x-\alpha \nabla f(x)]-x \neq 0$ for any $\alpha>0$
- p feasible descent direction
- A version of gradient projection method: $x_{k+1}=x_{k}+\alpha_{k} p$
- Another version: gradient projection method with projection arc:

$$
x_{k+1}:=\operatorname{Proj}_{x}\left[x_{k}-\alpha_{k} \nabla f\left(x_{k}\right)\right]
$$

step size α_{k} determined using Armijo rule

- $X=\mathbb{R}^{n} \Longrightarrow$ gradient projection becomes steepest descent

Gradient projection, projection arc
Gradient projection

- Bottleneck: how can we compute projections?
- In general, we study the KKT conditions of the system and apply a simplex-like method.
- If we have a specially structured feasible polyhedron, projections may be easier to compute.
- hypercube $\left\{x \mid 0 \leq x_{i} \leq 1, i=1, \ldots, n\right\}$
- unit simplex $\left\{x \mid \sum_{i=1}^{n} x_{i}=1, x \geq \mathbf{0}\right\}$ (cf. RMP in simplicial
decomposition)
- Example: the feasible set is $S=\left\{x \in \mathbb{R}^{n} \mid 0 \leq x_{i} \leq 1, i=1, \ldots, n\right\}$.
- Then $\operatorname{Proj}_{s}(x)=z$, where

$$
z_{i}= \begin{cases}0, & x_{i}<0, \\ x_{i}, & 0 \leq x_{i} \leq 1 \\ 1, & 1<x_{i},\end{cases}
$$

for $i=1, \ldots, n$.

- Exercise: prove this by applying the variational inequality (or KKT conditions) to the problem

$$
\min _{z \in S} \frac{1}{2}\|x-z\|^{2}
$$

- $X \subseteq \mathbb{R}^{n}$ nonempty, closed, convex; $f \in C^{1}$ on X;
- for the starting point $x_{0} \in X$ it holds that the level set $\operatorname{lev}_{f}\left(f\left(x_{0}\right)\right)$ intersected with X is bounded
- step length α_{k} is given by the Armijo step length rule along the projection arc
- Then: the sequence $\left\{x_{k}\right\}$ is bounded;
- every limit point of $\left\{x_{k}\right\}$ is stationary;
- $\left\{f\left(x_{k}\right)\right\}$ descending, lower bounded, hence convergent
- Convergence arguments similar to steepest descent one
- Assume: $X \subseteq \mathbb{R}^{n}$ nonempty, closed, convex;
- $f \in C^{1}$ on $X ; f$ convex;
- an optimal solution x^{*} exists
- In the algorithm (4), the step length α_{k} is given by the Armijo step length rule along the projection arc
- Then: the sequence $\left\{x_{k}\right\}$ converges to an optimal solution
- Note: with $X=\mathbb{R}^{n} \Longrightarrow$ convergence of steepest descent for convex problems with optimal solutions!
- A large-scale nonlinear network flow problem which is used to estimate traffic flows in cities
- Model over the small city of Sioux Falls in North Dakota, USA; 24 nodes, 76 links, and 528 pairs of origin and destination
- Three algorithms for the RMPs were tested-a Newton method and two gradient projection methods. MATLAB implementation.
- Remarkable difference-The Frank-Wolfe method suffers from very small steps being taken. Why? Many extreme points active = many routes used

Figure: The performance of SD vs. FW on the Sioux Falls network

