Constrained optimization

Emil Gustavsson

Fraunhofer-Chalmers Centre
December 11, 2017

- Consider the optimization problem to

$$
\begin{align*}
& \operatorname{minimize} f(x), \\
& \text { subject to } x \in S, \tag{1}
\end{align*}
$$

where $S \subset \mathbb{R}^{n}$ is non-empty, closed, and $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is differentiable

- Basic idea behind all penalty methods: to replace the problem (1) with the equivalent unconstrained one:

$$
\operatorname{minimize} f(x)+\chi_{s}(x),
$$

where

$$
\chi_{S}(x)= \begin{cases}0, & \text { if } x \in S \\ +\infty, & \text { otherwise }\end{cases}
$$

is the indicator function of the set S

- Feasibility is top priority; only when achieving feasibility can we concentrate on minimizing f
- Computationally bad: non-differentiable, discontinuous, and even not finite (though it is convex provided S is convex).
- Better: numerical "warning" before becoming infeasible or near-infeasible
- Approximate the indicator function with a numerically better behaving function

SUMT (Sequential Unconstrained Minimization Techniques)

- Suppose

$$
\left.\begin{array}{rl}
S=\left\{x \in \mathbb{R}^{n} \mid g_{i}(x) \leq 0,\right. & i=1, \ldots, m \\
h_{j}(x) & =0,
\end{array} \quad j=1, \ldots, \ell\right\},
$$

- Choose C^{0} penalty function $\psi: \mathbb{R} \rightarrow \mathbb{R}_{+}$s.t. $\psi(s)=0 \Longleftrightarrow s=0$
- Typical choices: $\psi_{1}(s)=|s|$, or $\psi_{2}(s)=s^{2}$
- Approximate indicator function as

$$
\chi_{S}(x) \approx \nu \check{\chi}_{S}(x):=\nu\left(\sum_{i=1}^{m} \psi\left(\max \left\{0, g_{i}(x)\right\}\right)+\sum_{j=1}^{\ell} \psi\left(h_{j}(x)\right)\right)
$$

Exterior penalty methods, II

Exterior penalty

- $S=\{x \mid-x \leq 0, x \leq 1\}$
- Indicator function

$$
\chi_{s}(x)= \begin{cases}0 & \text { if } 0 \leq x \leq 1 \\ \infty & \text { otherwise }\end{cases}
$$

- $\nu \check{\chi} s$ approximates χ_{s} from below ($\nu \check{\chi} s \leq \chi_{s}$)
- Penalty function $\psi(s)=s^{2}$
- Approximate function (i.e. substitute for indicator function)

$$
\nu \check{\chi} s=\nu\left((\max \{0, x-1\})^{2}+(\max \{0,-x\})^{2}\right)
$$

Example

Exterior penalty

- $\nu>0$ is penalty parameter
- $\nu \chi_{S}(x) \rightarrow \chi_{s}(x)$ as $\nu \rightarrow \infty$.

- Approximate function (i.e. substitute for indicator function)

$$
\nu \check{\chi} s=\nu\left((\max \{0, x-1\})^{2}+(\max \{0,-x\})^{2}\right)
$$

Example

Exterior penalty

- Let $S=\left\{x \in \mathbb{R}^{2} \mid-x_{2} \leq 0,\left(x_{1}-1\right)^{2}+x_{2}^{2}=1\right\}$
- Let $\psi(s)=s^{2}$. Then,

$$
\check{\chi}_{s}(x)=\left[\max \left\{0,-x_{2}\right\}\right]^{2}+\left[\left(x_{1}-1\right)^{2}+x_{2}^{2}-1\right]^{2}
$$

- Graph of $\check{\chi} s$ and S :

- Consider increasing sequence $\left\{\nu_{k}\right\}$ with $\lim _{k \rightarrow \infty} \nu_{k}=\infty$
- Corresponding to a sequence of approximate problems

$$
\begin{equation*}
\underset{x \in \mathbb{R}^{z}}{\operatorname{minimize}} f(x)+\nu \check{\chi} s(x) \tag{2}
\end{equation*}
$$

with optimal solutions $x_{\nu_{k}}^{*}$

- If $\left\{x_{\nu_{k}}^{*}\right\}$ has limit point \hat{x}, then \hat{x} optimal solution to (1)
- Let x^{*} be optimal solution to

$$
\begin{equation*}
\underset{x \in S}{\operatorname{minimize}} f(x) \tag{1}
\end{equation*}
$$

- For any $\nu>0$, let x_{ν}^{*} be optimal solution to

$$
\begin{equation*}
\underset{x \in \mathbb{R}^{n}}{\operatorname{minimize}} f(x)+\nu \check{\chi} s(x) \tag{2}
\end{equation*}
$$

with $\check{\chi}_{s}(x)=\sum_{i=1}^{m} \psi\left(\max \left\{0, g_{i}(x)\right\}\right)+\sum_{j=1}^{\ell} \psi\left(h_{j}(x)\right)$

- Lower bound on $f\left(x^{*}\right)$

$$
\forall \nu>0, \quad f\left(x_{\nu}^{*}\right)+\nu \check{\chi} s\left(x_{\nu}^{*}\right) \leq f\left(x^{*}\right)+\nu \check{\chi} s\left(x^{*}\right) \stackrel{\check{\chi} s\left(x^{*}\right)=0}{=} f\left(x^{*}\right)
$$

- (1) convex $+\psi(\cdot)$ convex $+\psi(s) \nearrow$ for $s \geq 0 \Longrightarrow$ (2) convex
- Assume global optimal solution exists in original problem

$$
\begin{equation*}
\underset{x \in S}{\operatorname{minimize}} \quad f(x) \tag{1}
\end{equation*}
$$

- For any $\nu>0$, assume x_{ν}^{*} global optimal solution exists for

$$
\begin{equation*}
\operatorname{minimize}_{x \in \mathbb{R}^{n}} f(x)+\nu \check{\chi}_{s}(x) \tag{2}
\end{equation*}
$$

Then, \hat{x} limit point of $\left\{x_{\nu}^{*}\right\}$ as $\nu \rightarrow \infty \Longrightarrow \hat{x}$ optimal to (1)

- Statement concerns global optimal solutions to (1) and (2)
- Statement useful if and only if (2) convex

The algorithm and its convergence properties, II Exterior penalty

- Let $f, g_{i}(i=1, \ldots, m)$, and $h_{j}(j=1, \ldots, \ell)$, be in C^{1}

Assume that the penalty function ψ is in C^{1} and that $\psi^{\prime}(s) \geq 0$ for all $s \geq 0$. Consider a sequence $\nu_{k} \rightarrow \infty$.
x_{k} stationary in (2) with ν_{k}

$$
x_{k} \rightarrow \hat{x} \text { as } k \rightarrow+\infty
$$ LICQ holds at \hat{x} \hat{x} feasible in (1)

$$
\Longrightarrow \hat{x} \text { stationary }(\mathrm{KKT}) \text { in (1) }
$$

- From the proof we obtain estimates of Lagrange multipliers: the optimality conditions of (2) gives that

$$
\mu_{i}^{*} \approx \nu_{k} \psi^{\prime}\left[\max \left\{0, g_{i}\left(x_{k}\right)\right\}\right] \quad \text { and } \quad \lambda_{j}^{*} \approx \nu_{k} \psi^{\prime}\left[h_{j}\left(x_{k}\right)\right]
$$

- ν large $\Longrightarrow f(x)+\nu \check{\sim} s(x)$ difficult to minimize (cf. indicator function)
- If we increase ν slowly a good guess is that $x_{\nu_{k}}^{*} \approx x_{\nu_{k-1}}^{*}$.
- This guess can be improved.
- Consider inequality constrained optimization

$$
\begin{equation*}
\underset{x \in S}{\operatorname{minimize}} f(x) \text { with } S=\left\{x \in \mathbb{R}^{n} \mid g_{i}(x) \leq 0, i=1, \ldots, m\right\} \tag{1}
\end{equation*}
$$

- Assume strictly feasible point exists: $\hat{x} \in \mathbb{R}^{n}$ s.t. $g_{i}(\hat{x})<0$ for all i
- Interior penalty (barrier) method approximates S from inside
- If a globally optimal solution to (1) is on the boundary of the feasible region, the method generates a sequence of interior points that converge to it
- Approximate χ_{S} from above

$$
\chi_{s}(x) \leq \nu \hat{\chi}_{S}(x):= \begin{cases}\nu \sum_{i=1}^{m} \phi\left[g_{i}(x)\right], & \text { if } g_{i}(x)<0, \forall i \\ +\infty, & \text { otherwise }\end{cases}
$$

- $\phi: \mathbb{R}_{-} \rightarrow \mathbb{R}_{+}$, continuous, $\lim _{s_{k}<0, s_{k} \rightarrow 0_{-}} \phi\left(s_{k}\right)=\infty$
- Typical examples: $\phi_{1}(s)=-s^{-1} ; \phi_{2}(s)=-\log [\min \{1,-s\}]$
- The differentiable logarithmic barrier function $\widetilde{\phi}_{2}(s)=-\log (-s)$
- $\widetilde{\phi}_{2}(s)<0$ if $s<-1$, but same convergence theory
- g_{i} convex $+\phi$ convex $+\phi \nearrow$ for $s<0 \Longrightarrow \nu \hat{\chi} s$ convex

Example

Figure: Feasible set is $S=\{x \mid-x \leq 0, x \leq 1\}$. Barrier function $\phi(s)=-1 / s$, barrier parameter $\nu=0.01$.

Example

Consider $S=\{x \in \mathbb{R} \mid-x \leq 0\}$. Choose $\phi=\phi_{1}=-s^{-1}$. Graph of the barrier function $\nu \hat{\chi} s$ in below figure for various values of ν (note how $\nu \hat{\chi}_{s}$ converges to χ_{s} as $\nu \downarrow 0$!):

- Penalty problem:

$$
\begin{equation*}
\operatorname{minimize} f(x)+\nu \hat{\chi}_{s}(x) \tag{2}
\end{equation*}
$$

- Global optimal solutions to (2) \rightarrow global optimal solution to (1)
- Convergence of stationary points also holds:

Let f and $g_{i}(i=1, \ldots, m)$, an ϕ be in C^{1}, and that $\phi^{\prime}(s) \geq 0$ for all $s<0$. Consider sequence $\nu_{k} \rightarrow 0$. Then:
x_{k} stationary in (3) with ν_{k}

$$
\left.\begin{array}{r}
x_{k} \rightarrow \hat{x} \text { as } k \rightarrow+\infty \\
\text { LICQ holds at } \hat{x}
\end{array}\right\} \Longrightarrow \hat{x} \text { stationary (KKT) in (1) }
$$

- $\phi(s)=\phi_{1}(s)=-1 / s$, then $\phi^{\prime}(s)=1 / s^{2} \Longrightarrow\left\{\nu_{k} / g_{i}^{2}\left(x_{k}\right)\right\} \rightarrow \hat{\mu}_{i}$.
- Consider the LP

$$
\begin{align*}
& \operatorname{minimize}-b^{T} y \\
& \text { subject to } A^{T} y+s=c \tag{3}\\
& \qquad s \geq 0^{n}
\end{align*}
$$

and the corresponding KKT conditions:

$$
\begin{align*}
A^{T} y+s & =c, \\
A x & =b, \tag{4}\\
x \geq 0^{n}, s \geq 0^{n}, x^{T} s & =0
\end{align*}
$$

- Apply barrier method for (3), taking care of $s \geq 0$. Subproblem:

$$
\begin{aligned}
& \operatorname{minimize}-b^{T} y-\nu \sum_{j=1}^{n} \log \left(s_{j}\right) \\
& \text { subject to } A^{T} y+s=c
\end{aligned}
$$

- The KKT conditions for subproblem:

$$
\begin{align*}
A^{T} y+s & =c, \\
A x & =b, \tag{5}\\
x_{j} s_{j} & =\nu, \quad j=1, \ldots, n
\end{align*}
$$

- (5): (4) with complementary slackness perturbed by ν

Optimal solutions to subproblems
minimize $-b^{T} y-\nu \sum_{j=1}^{n} \log \left(s_{j}\right)$
subject to $A^{T} y+s=c$
for different ν 's form the central path.

$$
\underset{x}{\operatorname{minimize}} f(x)
$$

Consider problem

$$
\text { subject to } \begin{aligned}
g(x) & \leq \mathbf{0} \\
h(x) & =\mathbf{0}
\end{aligned}
$$

- We have good solution methods for quadratic programs (QP) (e.g., simplicial decomposition and gradient projection method)
- At iterate x_{k}, approximate original problem with QP subproblem. Find search direction p by solving QP subproblem

$$
\begin{array}{ll}
\underset{p}{\operatorname{minimize}} & \frac{1}{2} p^{T} \nabla^{2} f\left(x_{k}\right) p+\nabla f\left(x_{k}\right)^{T} p \\
\text { subject to } & g_{i}\left(x_{k}\right)+\nabla g_{i}\left(x_{k}\right)^{T} p \leq 0, \quad i=1, \ldots, m \\
& h_{j}\left(x_{k}\right)+\nabla h_{j}\left(x_{k}\right)^{T} p=0, \quad j=1, \ldots, l
\end{array}
$$

- Suggested method does not always work!

Consider problem

$$
\min _{x}-x_{1}-\frac{1}{2}\left(x_{2}\right)^{2}
$$

s.t. $\left(x_{1}\right)^{2}+\left(x_{2}\right)^{2}-1=0$

Optimal solution $(1,0)^{T}$, consider QP subproblem at $x_{1}=1.1, x_{2}=0$:

$$
\begin{aligned}
& \underset{p}{\operatorname{minimize}}-p_{1}-\frac{1}{2}\left(p_{2}\right)^{2} \\
& \text { subject to } p_{1}+0.0955=0
\end{aligned}
$$

QP subproblem unbounded - bad linear approx. of nonlinear constraint!

- Linearized constraints might be too inaccurate!
- Account for nonlinear constraints in objective - Lagrangian idea.

$$
L\left(x, \mu_{k}, \lambda_{k}\right)=f(x)+\mu_{k}^{T} g(x)+\lambda_{k}^{T} h(x) .
$$

- Solve (improved) QP subproblem to find search direction p : $\underset{p}{\operatorname{minimize}} \frac{1}{2} p^{T} \nabla_{x x}^{2} L\left(x_{k}, \mu_{k}, \lambda_{k}\right) p+\nabla f\left(x_{k}\right)^{T} p$ subject to

$$
\begin{array}{ll}
g_{i}\left(x_{k}\right)+\nabla g_{i}\left(x_{k}\right)^{T} p \leq 0, \quad i=1, \ldots, m \\
h_{j}\left(x_{k}\right)+\nabla h_{j}\left(x_{k}\right)^{T} p=0, \quad j=1, \ldots, l
\end{array}
$$

- Direction p, with multipliers μ_{k+1}, λ_{k+1}, define Newton step for solving (nonlinear) KKT conditions (see text for more).
- Lagrangian Hessian $\nabla_{x x}^{2} L\left(x_{k}, \mu_{k}, \lambda_{k}\right)$ may not be positive definite.
- Given $x_{k} \in \mathbb{R}^{n}$ and a vector $\left(\mu_{k}, \lambda_{k}\right) \in \mathbb{R}_{+}^{m} \times \mathbb{R}^{\ell}$, choose a positive definite matrix $B_{k} \in \mathbb{R}^{n \times n}$. $B_{k} \approx \nabla_{x x}^{2} L\left(x_{k}, \mu_{k}, \lambda_{k}\right)$
- Solve

$$
\begin{align*}
\underset{p}{\operatorname{minimize}} & \frac{1}{2} p^{T} B_{k} p+\nabla f\left(x_{k}\right)^{T} p, \tag{6a}\\
\text { subject to } & g_{i}\left(x_{k}\right)+\nabla g_{i}\left(x_{k}\right)^{T} p \leq 0, i=1, \ldots, m, \tag{6b}\\
& h_{j}\left(x_{k}\right)+\nabla h_{j}\left(x_{k}\right)^{T} p=0, j=1, \ldots, \ell \tag{6c}
\end{align*}
$$

- Working version of SQP search direction subproblem
- Quadratic convergence near KKT points. What about global convergence? Perform line search with some merit function.

1. Initialize iterate with $\left(x_{0}, \mu_{0}, \lambda_{0}\right), B_{0}$ and merit function M.
2. At iteration k with $\left(x_{k}, \mu_{k}, \lambda_{k}\right)$ and B_{k}, solve QP subproblem for search direction p_{k} :

$$
\begin{array}{cl}
\underset{p}{\operatorname{minimize}} & \frac{1}{2} p^{T} B_{k} p+\nabla f\left(x_{k}\right)^{T} p \\
\text { subject to } & g_{i}\left(x_{k}\right)+\nabla g_{i}\left(x_{k}\right)^{T} p \leq 0, \quad i=1, \ldots, m \\
& h_{j}\left(x_{k}\right)+\nabla h_{j}\left(x_{k}\right)^{T} p=0, \quad j=1, \ldots, l
\end{array}
$$

Let μ_{k}^{*} and λ_{k}^{*} be optimal multipliers of QP subproblem. Define $\Delta x=p_{k}, \Delta \mu=\mu_{k}^{*}-\mu_{k}, \Delta \lambda=\lambda_{k}^{*}-\lambda_{k}$.
3. Perform line search to find $\alpha_{k}>0$ s.t. $M\left(x_{k}+\alpha_{k} \Delta x\right)<M\left(x_{k}\right)$.
4. Update iterates:

$$
x_{k+1}=x_{k}+\alpha_{k} \Delta x, \mu_{k+1}=\mu_{k}+\alpha_{k} \Delta \mu, \lambda_{k+1}=\lambda_{k}+\alpha_{k} \Delta \lambda .
$$

5. Stop if converge, otherwise update B_{k} to B_{k+1}; go to step 2.

Merit function as non-differentiable exact penalty function P_{e} :

$$
\begin{aligned}
\check{\chi}_{s}(x) & :=\sum_{i=1}^{m} \operatorname{maximum}\left\{0, g_{i}(x)\right\}+\sum_{j=1}^{\ell}\left|h_{j}(x)\right|, \\
P_{e}(x) & :=f(x)+\nu \check{\chi}_{s}(x)
\end{aligned}
$$

- For large enough ν, solution to QP subproblem (6) defines a descent direction for P_{e} at $\left(x_{k}, \mu_{k}, \lambda_{k}\right)$.
- For large enough ν, reduction in P_{e} implies progress towards KKT point in the original constrained optimization problem.
- Compare convergence results for exterior penalty methods.
- See text for more (Proposition 13.10).
- Combining the descent direction property and exact penalty function property, one can prove convergence of the merit SQP method.
- Convergence of the SQP method towards KKT points can be established under additional conditions on the choices of matrices $\left\{B_{k}\right\}$

1. Matrices B_{k} bounded
2. Every limit point of $\left\{B_{k}\right\}$ positive definite

- Selecting the value of ν is difficult
- No guarantees that the subproblems (6) are feasible; we assumed above that the problem is well-defined
- P_{e} is only continuous; some step length rules infeasible
- Fast convergence not guaranteed (the Maratos effect)
- Penalty methods in general suffer from ill-conditioning. For some problems the ill-conditioning is avoided
- Exact penalty SQP methods suffer less from ill-conditioning, and the number of QP:s needed can be small. They can, however, cost a lot computationally
- fmincon in MATLAB is an SQP-based solver

