Lecture 14 Constrained optimization

Emil Gustavsson Fraunhofer-Chalmers Centre December 11, 2017

CHALMERS

GÖTEBORGS UNIVERSITET

◆□> ◆□> ◆目> ◆目> ◆目> ◆□>

Consider the optimization problem to

minimize
$$f(x)$$
,
subject to $x \in S$, (1)

where $S \subset \mathbb{R}^n$ is non-empty, closed, and $f : \mathbb{R}^n \to \mathbb{R}$ is differentiable

Basic idea behind all penalty methods: to replace the problem (1) with the equivalent unconstrained one:

minimize $f(x) + \chi_{S}(x)$,

where

$$\chi_{\mathcal{S}}(x) = \begin{cases} 0, & \text{if } x \in \mathcal{S}, \\ +\infty, & \text{otherwise} \end{cases}$$

is the *indicator function* of the set S

- Feasibility is top priority; only when achieving feasibility can we concentrate on minimizing f
- Computationally bad: non-differentiable, discontinuous, and even not finite (though it is convex provided S is convex).
- Better: numerical "warning" before becoming infeasible or near-infeasible
- Approximate the indicator function with a numerically better behaving function

SUMT (Sequential Unconstrained Minimization Techniques)

Suppose

$$S = \{ x \in \mathbb{R}^n \mid g_i(x) \le 0, \quad i = 1, \dots, m, \ h_j(x) = 0, \quad j = 1, \dots, \ell \},$$

- ▶ Choose C^0 penalty function $\psi : \mathbb{R} \to \mathbb{R}_+$ s.t. $\psi(s) = 0 \iff s = 0$
 - Typical choices: $\psi_1(s) = |s|$, or $\psi_2(s) = s^2$
- Approximate indicator function as

$$\chi_{\mathcal{S}}(x) \approx \nu \check{\chi}_{\mathcal{S}}(x) := \nu \left(\sum_{i=1}^{m} \psi \big(\max\{0, g_i(x)\} \big) + \sum_{j=1}^{\ell} \psi \big(h_j(x) \big) \right)$$

Exterior penalty methods, II

Exterior penalty

•
$$S = \{x \mid -x \le 0, x \le 1\}$$

Indicator function

$$\chi_{\mathcal{S}}(x) = \begin{cases} 0 & \text{if } 0 \le x \le 1 \\ \infty & \text{otherwise} \end{cases}$$

• $\nu \check{\chi}_S$ approximates χ_S from below ($\nu \check{\chi}_S \leq \chi_S$)

Approximate function (i.e. substitute for indicator function)

$$\nu \check{\chi}_{S} = \nu \Big((\max\{0, x-1\})^{2} + (\max\{0, -x\})^{2} \Big)$$

- $\nu > 0$ is penalty parameter
- $\nu \check{\chi}_{S}(x) \rightarrow \chi_{S}(x)$ as $\nu \rightarrow \infty$.

Approximate function (i.e. substitute for indicator function)

$$\nu \check{\chi}_{S} = \nu \Big((\max\{0, x - 1\})^{2} + (\max\{0, -x\})^{2} \Big)$$

Example

• Let $S = \{ x \in \mathbb{R}^2 \mid -x_2 \leq 0, (x_1 - 1)^2 + x_2^2 = 1 \}$

► Let
$$\psi(s) = s^2$$
. Then,
 $\check{\chi}_S(x) = [\max\{0, -x_2\}]^2 + [(x_1 - 1)^2 + x_2^2 - 1]^2$

▶ Graph of X̃_S and S:

TMA947 - Lecture 14

• Consider increasing sequence
$$\{\nu_k\}$$
 with $\lim_{k\to\infty}\nu_k=\infty$

Corresponding to a sequence of approximate problems

$$\underset{x \in \mathbb{R}^{n}}{\text{minimize}} \quad f(x) + \nu \check{\chi}_{\mathcal{S}}(x) \tag{2}$$

with optimal solutions $x_{\nu_k}^*$

• If $\{x_{\nu_k}^*\}$ has limit point \hat{x} , then \hat{x} optimal solution to (1)

Let x* be optimal solution to

$$\min_{x \in S} f(x) \tag{1}$$

• For any $\nu > 0$, let x_{ν}^* be optimal solution to

$$\underset{x \in \mathbb{R}^{n}}{\text{minimize}} \quad f(x) + \nu \check{\chi}_{\mathcal{S}}(x) \tag{2}$$

with
$$\check{\chi}_{\mathcal{S}}(x) = \sum_{i=1}^{m} \psi \left(\max\{0, g_i(x)\} \right) + \sum_{j=1}^{\ell} \psi \left(h_j(x) \right)$$

Lower bound on f(x*)

$$\forall \nu > 0, \quad f(x_{\nu}^{*}) + \nu \check{\chi}_{\mathcal{S}}(x_{\nu}^{*}) \le f(x^{*}) + \nu \check{\chi}_{\mathcal{S}}(x^{*}) \stackrel{\check{\chi}_{\mathcal{S}}(x^{*})=0}{=} f(x^{*})$$

▶ (1) convex + $\psi(\cdot)$ convex + $\psi(s) \nearrow$ for $s \ge 0 \implies$ (2) convex

- Statement concerns global optimal solutions to (1) and (2)
- Statement useful if and only if (2) convex

The algorithm and its convergence properties, II Exterior penalty

• Let
$$f$$
, g_i $(i = 1, ..., m)$, and h_j $(j = 1, ..., \ell)$, be in C^1

Assume that the penalty function ψ is in C^1 and that $\psi'(s) \ge 0$ for all $s \ge 0$. Consider a sequence $\nu_k \to \infty$. x_k stationary in (2) with ν_k $x_k \to \hat{x}$ as $k \to +\infty$ LICQ holds at \hat{x} \hat{x} feasible in (1) \Rightarrow \hat{x} stationary (KKT) in (1)

From the proof we obtain estimates of Lagrange multipliers: the optimality conditions of (2) gives that

$$\mu_i^* \approx \nu_k \psi'[\max\{0, g_i(x_k)\}]$$
 and $\lambda_i^* \approx \nu_k \psi'[h_j(x_k)]$

▶ ν large $\implies f(x) + \nu \check{\chi}_{S}(x)$ difficult to minimize (cf. indicator function)

• If we increase ν slowly a good guess is that $x_{\nu_k}^* \approx x_{\nu_{k-1}}^*$.

This guess can be improved.

Consider inequality constrained optimization

 $\underset{x \in S}{\text{minimize}} f(x) \quad \text{with } S = \{ x \in \mathbb{R}^n \mid g_i(x) \le 0, \ i = 1, \dots, m \} \ (1)$

- ▶ Assume *strictly feasible* point exists: $\hat{x} \in \mathbb{R}^n$ s.t. $g_i(\hat{x}) < 0$ for all i
- ▶ Interior penalty (barrier) method approximates S from inside
- If a globally optimal solution to (1) is on the boundary of the feasible region, the method generates a sequence of interior points that converge to it

• Approximate χ_S from above

$$\chi_{\mathcal{S}}(x) \leq \nu \hat{\chi}_{\mathcal{S}}(x) := \begin{cases} \nu \sum_{i=1}^{m} \phi[g_i(x)], & \text{if } g_i(x) < 0, \forall i, \\ +\infty, & \text{otherwise,} \end{cases}$$

▶
$$\phi : \mathbb{R}_{-} \to \mathbb{R}_{+}$$
, continuous, $\lim_{s_k < 0, s_k \to 0_{-}} \phi(s_k) = \infty$

- Typical examples: $\phi_1(s) = -s^{-1}$; $\phi_2(s) = -\log[\min\{1, -s\}]$
- The differentiable *logarithmic barrier function* φ₂(s) = − log(−s)
 φ₂(s) < 0 if s < −1, but same convergence theory

• $g_i \operatorname{convex} + \phi \operatorname{convex} + \phi \nearrow$ for $s < 0 \implies \nu \hat{\chi}_S$ convex

Figure: Feasible set is $S = \{x \mid -x \le 0, x \le 1\}$. Barrier function $\phi(s) = -1/s$, barrier parameter $\nu = 0.01$.

TMA947 - Lecture 14

Example

Consider $S = \{ x \in \mathbb{R} \mid -x \leq 0 \}$. Choose $\phi = \phi_1 = -s^{-1}$. Graph of the barrier function $\nu \hat{\chi}_S$ in below figure for various values of ν (note how $\nu \hat{\chi}_S$ converges to χ_S as $\nu \downarrow 0!$):

TMA947 - Lecture 14

Penalty problem:

minimize
$$f(x) + \nu \hat{\chi}_{S}(x)$$
 (2)

- Global optimal solutions to $(2) \rightarrow$ global optimal solution to (1)
- Convergence of stationary points also holds:

Let f and g_i (i = 1, ..., m), an ϕ be in C^1 , and that $\phi'(s) \ge 0$ for all s < 0. Consider sequence $\nu_k \to 0$. Then:

 $\left. \begin{array}{c} x_k \text{ stationary in (3) with } \nu_k \\ x_k \to \hat{x} \text{ as } k \to +\infty \\ \text{LICQ holds at } \hat{x} \end{array} \right\} \implies \hat{x} \text{ stationary (KKT) in (1)}$

• $\phi(s) = \phi_1(s) = -1/s$, then $\phi'(s) = 1/s^2 \implies \{\nu_k/g_i^2(x_k)\} \rightarrow \hat{\mu}_i$.

Consider the LP

minimize
$$-b^T y$$
,
subject to $A^T y + s = c$, (3)
 $s \ge 0^n$,

and the corresponding KKT conditions:

$$A^{T}y + s = c,$$

$$Ax = b,$$

$$x \ge 0^{n}, \ s \ge 0^{n}, \ x^{T}s = 0$$
(4)

Interior point (polynomial) method for LP, II Interior penalty

• Apply barrier method for (3), taking care of $s \ge 0$. Subproblem:

minimize
$$-b^T y - \nu \sum_{j=1}^n \log(s_j)$$

subject to $A^T y + s = c$

The KKT conditions for subproblem:

$$A^{T}y + s = c,$$

$$Ax = b,$$

$$x_{j}s_{j} = \nu, \quad j = 1, \dots, n$$
(5)

• (5): (4) with complementary slackness perturbed by ν

Optimal solutions to subproblems

minimize
$$-b^T y - \nu \sum_{j=1}^n \log(s_j)$$

subject to $A^T y + s = c$

for different ν 's form the central path.

Sequential quadratic programming (SQP), first attempt

 $\begin{array}{l} \underset{x}{\text{minimize}} \quad f(x) \\ \text{subject to } g(x) \leq \mathbf{0} \\ h(x) = \mathbf{0} \end{array}$

Consider problem

 We have good solution methods for quadratic programs (QP) (e.g., simplicial decomposition and gradient projection method)

At iterate x_k, approximate original problem with QP subproblem.
 Find search direction p by solving QP subproblem

minimize
$$\frac{1}{2}p^T \nabla^2 f(x_k)p + \nabla f(x_k)^T p$$

subject to $g_i(x_k) + \nabla g_i(x_k)^T p \leq 0, \quad i = 1, ..., m$
 $h_j(x_k) + \nabla h_j(x_k)^T p = 0, \quad j = 1, ..., l$

Suggested method does not always work!

SOP

Optimal solution $(1,0)^T$, consider QP subproblem at $x_1 = 1.1$, $x_2 = 0$:

minimize
$$-p_1 - \frac{1}{2}(p_2)^2$$

subject to $p_1 + 0.0955 = 0$

QP subproblem unbounded – bad linear approx. of nonlinear constraint!

SQP, improved QP subproblem

- Linearized constraints might be too inaccurate!
- Account for nonlinear constraints in objective Lagrangian idea.

$$L(x, \mu_k, \lambda_k) = f(x) + \mu_k^T g(x) + \lambda_k^T h(x).$$

Solve (improved) QP subproblem to find search direction p:

$$\begin{array}{ll} \underset{p}{\text{minimize}} & \frac{1}{2}p^{T}\nabla_{xx}^{2}L(x_{k},\mu_{k},\lambda_{k})p + \nabla f(x_{k})^{T}p\\ \text{subject to} & g_{i}(x_{k}) + \nabla g_{i}(x_{k})^{T}p \leq 0, \quad i = 1,\ldots,m\\ & h_{j}(x_{k}) + \nabla h_{j}(x_{k})^{T}p = 0, \quad j = 1,\ldots,l \end{array}$$

- Direction *p*, with multipliers μ_{k+1}, λ_{k+1}, define Newton step for solving (nonlinear) KKT conditions (see text for more).
- ► Lagrangian Hessian $\nabla_{xx}^2 L(x_k, \mu_k, \lambda_k)$ may not be positive definite.

SQP

SQP, working QP subproblem

Given x_k ∈ ℝⁿ and a vector (μ_k, λ_k) ∈ ℝ^m₊ × ℝ^ℓ, choose a positive definite matrix B_k ∈ ℝ^{n×n}. B_k ≈ ∇²_{xx}L(x_k, μ_k, λ_k)

Solve

minimize
$$\frac{1}{2}p^T B_k p + \nabla f(x_k)^T p,$$
 (6a)

subject to
$$g_i(x_k) + \nabla g_i(x_k)^T p \leq 0, i = 1, \dots, m,$$
 (6b)

$$h_j(x_k) + \nabla h_j(x_k)^T p = 0, \ j = 1, \dots, \ell$$
 (6c)

- Working version of SQP search direction subproblem
- Quadratic convergence near KKT points. What about global convergence? Perform line search with some merit function.

- 1. Initialize iterate with (x_0, μ_0, λ_0) , B_0 and merit function M.
- 2. At iteration k with (x_k, μ_k, λ_k) and B_k , solve QP subproblem for search direction p_k :

minimize
$$\frac{1}{2} p^T B_k p + \nabla f(x_k)^T p$$

subject to $g_i(x_k) + \nabla g_i(x_k)^T p \le 0, \quad i = 1, ..., m$
 $h_j(x_k) + \nabla h_j(x_k)^T p = 0, \quad j = 1, ..., l$

Let μ_k^* and λ_k^* be optimal multipliers of QP subproblem. Define $\Delta x = p_k$, $\Delta \mu = \mu_k^* - \mu_k$, $\Delta \lambda = \lambda_k^* - \lambda_k$.

- 3. Perform line search to find $\alpha_k > 0$ s.t. $M(x_k + \alpha_k \Delta x) < M(x_k)$.
- 4. Update iterates:

 $x_{k+1} = x_k + \alpha_k \Delta x, \ \mu_{k+1} = \mu_k + \alpha_k \Delta \mu, \ \lambda_{k+1} = \lambda_k + \alpha_k \Delta \lambda.$

5. Stop if converge, otherwise update B_k to B_{k+1} ; go to step 2.

Merit function as *non-differentiable* exact penalty function P_e :

$$\check{\chi}_{\mathcal{S}}(x) := \sum_{i=1}^{m} \max \{0, g_i(x)\} + \sum_{j=1}^{\ell} |h_j(x)|,$$
$$P_e(x) := f(x) + \nu \check{\chi}_{\mathcal{S}}(x)$$

- For large enough ν, solution to QP subproblem (6) defines a descent direction for P_e at (x_k, μ_k, λ_k).
- For large enough ν, reduction in P_e implies progress towards KKT point in the original constrained optimization problem.
 - Compare convergence results for exterior penalty methods.
 - See text for more (Proposition 13.10).

SO

Combining the descent direction property and exact penalty function property, one can prove convergence of the merit SQP method.

- Convergence of the SQP method towards KKT points can be established under additional conditions on the choices of matrices {B_k}
 - 1. Matrices B_k bounded
 - 2. Every limit point of $\{B_k\}$ positive definite

- Selecting the value of ν is difficult
- No guarantees that the subproblems (6) are feasible; we assumed above that the problem is well-defined
- \triangleright P_e is only continuous; some step length rules infeasible
- ► Fast convergence not guaranteed (the *Maratos effect*)
- Penalty methods in general suffer from ill-conditioning. For some problems the ill-conditioning is avoided
- Exact penalty SQP methods suffer less from ill-conditioning, and the number of QP:s needed can be small. They can, however, cost a lot computationally
- fmincon in MATLAB is an SQP-based solver