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Convex sets

We begin by defining the notion of a convex set.

Definition (convex set). The set S ⊆ R
n is convex if

x1,x2 ∈ S
λ ∈ (0, 1)

⇒ λx1 + (1− λ)x2 ∈ S.

A set is thus convex if all convex combinations of any two points in the set lie in the set, see
Figure 1.

S

x1

λx1 + (1− λ)x2

x2

Figure 1: A convex set

Examples:

– The empty set is a convex set.

– The set {x ∈ R
n | ‖x‖ ≤ a} is convex for any a ∈ R.

– The set {x ∈ R
n | ‖x‖ = a} is non-convex for any a > 0.

– The set {0, 1, 2, 3} is non-convex.
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Two non-convex sets are shown in the below figure.

x1

x2

λx1 + (1− λ)x2
S

S

Figure 2: Two non-convex sets.

Proposition. Let Sk ⊆ R
n, k ∈ K be a collection of convex sets. Then the intersection

⋂

k∈K
Sk is

also a convex set.

Proof. See Proposition 3.3 in the book.

Convex and affine hulls

We define the affine hull of a finite set V = {v1,v2, . . . ,vk} as

aff V :=

{

λ1v
1 + · · ·+ λkv

k

∣

∣

∣

∣

∣

λ1, . . . , λk ∈ R,

k
∑

i=1

λi = 1

}

We define the convex hull of a finite set V = {v1,v2, . . . ,vk} as

conv V :=

{

λ1v
1 + · · ·+ λkv

k

∣

∣

∣

∣

∣

λ1, . . . , λk ≥ 0,

k
∑

i=1

λi = 1

}

The sets are defined by all possible affine (convex) combinations of the k points.

v1 v1v1

v2v2v2

V aff V conv V

Figure 3: The set V = {v1,v2}, the affine hull of V , and the convex hull of V .
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In general, we can define the convex hull of a set S as

a) the unique minimal convex set containing S,

b) the intersection of all convex sets containing S, or

c) the set of all convex combinations of points in S.

Every point x ∈ convS, where S ⊆ R
n can thus be expressed as a convex combination of points

in S. But how many points do we need? The answer is, according to the following theorem, n+1
points.

Theorem (Caratheodory’s theorem). Let x ∈ convS, where S ⊆ R
n. Then x can be expressed as

a convex combination of n+ 1 or fewer points of S.

Proof. See Theorem 3.11 in the book.

Polytope

We now define the notion of a polytope.

Definition (polytope). A set P ⊂ R
n is a polytope if it is the convex hull of finitely many points in R

n.

A cube and a tetrahedron are examples of polytopes in R
3. In Figure 4, a polytope in R

2 generated
by seven points is illustrated.

v1

v2

v3

v4

v5

v6

v7

Figure 4: A polytope generated by seven point. The red dots are the extreme points

Definition (extreme point). A point v of a convex set P is an extreme point if whenever

v = λx1 + (1− λ)x2

x1,x2 ∈ P
λ ∈ (0, 1)







=⇒ v = x1 = x2.
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An extreme point of P is thus a point in P that can not be represented as a convex combination
of two other points, see Figure 4 for an example. We can now formulate the following intuitive
theorem.

Theorem. Let P be the polytope convV, where V = {v1, . . . ,vk} ⊂ R
n. Then P is equal to the convex

hull of its extreme points.

The theorem basically says that the interesting points in a polytope are the extreme points. By
combining the two last theorems, we can deduce that any point in a polytope P can be described
as a convex combination of at most n + 1 extreme points of P . This is often denoted as the inner
representation of P . We now try to describe a polytope as linear inequalities instead of extreme
points (exterior representation).

Polyhedron

Definition (polyhedron). A set P is a polyhedron if there exists a matrix A ∈ R
m×n and a vector

b ∈ R
m such that

P = {x ∈ R
n | Ax ≤ b}.

– Ax ≤ b ⇐⇒ aix ≤ bi, i = 1, . . . ,m. (ai row i of A)

– {x ∈ R
n | aix ≤ bi}, i = 1, . . . ,m are half-spaces, so

– P is the intersection of m half-spaces.

– Figure 5 shows the bounded polyhedron defined by A =





1 2
−2 1
0 −1



 and b =





6
−2
−1





– Figure 6 shows the undounded polyhedron defined by A =

(

−2 1
0 −1

)

and b =

(

−2
−1

)

.

x2

x1

1

1

2

2

3

3 4 5

x2 = 1

x1 + 2x2 = 6
2x1 − x2 = 2

P

Figure 5: A bounded polyhedron described by three linear inequalities.

To make the distinction between a polytope and a polyhedron clearer, we have that

– A polytope = The convex hull of finitely many points.
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x2

x1

1

1

2

2
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3 4 5

x2 = 1

2x1 − x2 = 2

P

Figure 6: An unbounded polyhedron described by two linear inequalities.

– A polyhedron = The intersection of finitely many half-spaces.

We can now define the extreme points of a polyhedron algebraically

Theorem. Let x̄ ∈ P = {x ∈ R
n | Ax ≤ b}, where A ∈ R

m×n, rankA = n and b ∈ R
m. Further, let

Āx̄ = b̄ be the equality subsystem of Ax ≤ b. Then x̄ is an extreme point of P if and only if rank Ā = n

Proof. See Theorem 3.21 in the book.

Note that the equality subsystem is obtained if one strikes out all rows i with aix̄ < bi, and require
equality for the rest of the rows.

x2

x1

1

1

2

2

3

3 4 5

x2 = 1

x1 + 2x2 = 6
2x1 − x2 = 2

P

x̄ = (3/2, 1)T

Figure 7: x̄ = (3/2, 1)T is an extreme point of P

x2

x1

1

1

2

2

3

3 4 5

x2 = 1

x1 + 2x2 = 6
2x1 − x2 = 2

P

x̄ = (2, 1)T

Figure 8: x̄ = (2, 1)T is not an extreme point of P
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That the equality subsystem has rank n basically means that there should be at least n linearly
independent half-spaces going through the point in order for it to be an extreme point. In Figure 7,
two half-spaces goes through the point x̄. Hence, it is an extreme point. In Figure 8, however,
only one half-space goes through x̄, meaning that it is not an extreme point.

How many extreme points can there exist in a polyhedron P = {x ∈ R
n | Ax ≤ b}?

The number of extreme points of P is finite (very important for linear programming).

Definition (cone). A set C ⊆ R
n is a cone if λx ∈ C whenever x ∈ C and λ > 0.

Example: The set {x ∈ R
n | Ax ≤ 0} is a polyhedral cone. In Figure 9 one convex and one

non-convex cone are illustrated.

C

(a) A convex cone

C

C

(b) A non-convex cone

Figure 9: Two cones.

We can now formulate a very important theorem which basically says that

a polyhedron = a polytope + a polyhedral cone

Theorem (The representation theorem). Let the polyhedron Q = {x ∈ R
n | Ax ≤ b} and let

{v1, . . . ,vk} be its extreme points. Define P := conv
(

{v1, . . . ,vk}
)

and C := {x ∈ R
n | Ax ≤ 0}.

Then Q = P + C = {x ∈ R
n | x = u+ v for some u ∈ P and v ∈ C}

Proof. See Theorem 3.26 in the book.

Farkas’ Lemma

Theorem (Farkas’ Lemma). Let A ∈ R
m×n and b ∈ R

m. Then, exactly one of the systems

Ax = b, (I)

x ≥ 0
n,

and

ATπ ≤ 0
n, (II)

bTπ > 0,

has a feasible solution, and the other system is inconsistent.
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x

x1 x2λx1 + (1− λ)x2

f(x1)

f(x2)

f(λx1 + (1− λ)x2)

λf(x1) + (1− λ)f(x2)
y y = f(x)

Figure 10: A convex function

Proof. See Theorem 3.32 in the book.

Farkas’ Lemma says that:

(A) Either b lies in the cone spanned by the columns of A, i.e.,

b = Ax, for some x ≥ 0,

(B) or, b does not lie in the cone (and can then be separated from the cone).

Farkas’ Lemma is crucial for LP theory and optimality conditions.

Convex functions

Definition (convex function). Suppose S ⊆ R
n is convex. A function f : Rn → R is convex on S if

x1,x2 ∈ S
λ ∈ (0, 1)

}

=⇒ f
(

λx1 + (1− λ)x2
)

≤ λf(x1) + (1− λ)f(x2).

– The linear interpolation between two points on the function never is lower than the function.

– A function is strictly convex on S if < holds in place of ≤ for all x1 6= x2.

– A function f is concave if −f is convex.

Two important examples:

– f(x) = cTx+ d, where c ∈ R
n, d ∈ R is both convex and concave.

– f(x) = ||x|| is convex, f(x) = ||x||2 is strictly convex.

Proposition (sum of convex functions). The non-negative linear combination of convex functions is
convex.

Proposition (composite functions). Suppose S ⊆ R
n and P ⊆ R. Let g : S → R be convex on S

and f : P → R be convex and non-decreasing on P . Then the composite function f(g) is convex on
{x ∈ S | g(x) ∈ P}.
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To show the connection between convex sets and convex functions, we introduce the following
notion.

Definition (epigraph). The epigraph of a function f : Rn → R ∪ {+∞} is defined as

epi f := {(x, α) ∈ R
n × R | f(x) ≤ α} .

The epigraph of a function f : Rn → R ∪ {+∞} restricted to the set S ⊆ R
n is defined as

epiS f := {(x, α) ∈ S × R | f(x) ≤ α} .

x

f(x)epi f

(a) The epigraph of f .

x

f(x)epi
S
f

S

(b) The epigraph of f restricted to S.

Figure 11: Epigraphs.

Theorem. Suppose S ⊆ R
n is a convex set. Then, the function f : Rn → R∪{∞} is convex on S if and

only if its epigraph restricted to S is a convex set in R
n+1.

Proof. See Theorem 3.47 in the book.

To check whether a function is convex or not, one would have to verify that the linear interpo-
lation of any two points does not lie below the function itself. This is, in general, not possible
to do, so we often rely on the fact that we know more about the function we consider. We start
by assuming that the function is once differentiable with continuous partial derivatives, i.e., that
f ∈ C1.

Theorem (convexity characterization in C1). Let f ∈ C1 on an open convex set S

f is convex on S ⇐⇒ f(x) ≥ f(x̄) +∇f(x̄)T (x− x̄), for all x, x̄ ∈ S.

Proof. See Theorem 3.48 in the book.

This theorem basically says that every tangent plane to the graph of f lies on, or below, the epi-
graph of f , or that each first-order approximation of f lies below f . See Figure 12

Another equivalent way of writing this is the following: f ∈ C1 is convex on the open, convex set
S if and only if

[∇f(x)−∇f(y)]
T
(x− y) ≥ 0

– the gradient of f is monotone on S, or

– the angle between ∇f(x)−∇f(y) and x− y should be between −π/2 and π/2.
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x

f(x)

f(x̄) + f ′(x̄)(x− x̄)

x̄

Figure 12: A convex function. The first-order approximation lies below the function.

Now we add even more information about the function f .

Theorem (convexity characterization in C2). Let S be a convex set.

a) f is convex on S ⇐⇒∇2f(x) � 0 for all x ∈ S

b) ∇2f(x) ≻ 0 for all x ∈ S =⇒ f is strictly convex on S.

Proof. See Theorem 3.49 in the book.

Note that in b), "⇐=" does not hold. Take for example f(x) = x4.

An important example of a function in C2 is the quadratic function

f(x) =
1

2
xTQx− qTx,

which is convex on R
n if and only if Q � 0. This is because ∇2f(x) = Q is independent of x.

Convex problems

A convex problem is an optimization problem where one wants to minimize a convex function over
a convex set. The general optimization problem

minimize f(x),

subject to gi(x) ≤ 0, i ∈ I,

gi(x) = 0, i ∈ E ,

x ∈ X,

is convex if

– f is a convex function,

– gi, i ∈ I are convex functions,

– gi, i ∈ E are affine functions, and

– X is a convex set.

(Then the sets {x | gi(x) ≤ 0, i ∈ I} and {x | gi(x) = 0, i ∈ E} are convex).
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