TMA947 / MMG621 — Nonlinear optimization

Lecture 5 — Optimality conditions

Emil Gustavsson, Zuzana Nedělková

November 11, 2016

Consider a constrained optimization problem of the form

$$\min f(\boldsymbol{x}), \tag{1a}$$

subject to $x \in S$, (1b)

where $f : \mathbb{R}^n \to \mathbb{R}$ and $S \subset \mathbb{R}^n$. We have already derived an optimality condition for the case where *S* is convex and $f \in C^1$, i.e.,

 x^* is a local minimum $\Longrightarrow x^*$ is a stationary point

The stationary point was defined in several different ways, one of the definitions was that if $x^* \in S$ is a stationary point of f over S then

$$\nabla f(\boldsymbol{x}^*) \in N_S(\boldsymbol{x}^*),$$

where $N_S(\boldsymbol{x}^*)$ is the normal cone of S at \boldsymbol{x}^* , i.e.,

$$N_S(\boldsymbol{x}^*) := \{ \boldsymbol{p} \in \mathbb{R}^n \mid \boldsymbol{p}^{\mathrm{T}}(\boldsymbol{y} - \boldsymbol{x}^*) \leq 0, \forall \boldsymbol{y} \in S \}.$$

The optimality condition $-\nabla f(x^*) \in N_S(x^*)$ says that it should not be possible to move from x^* in a direction allowed by S, such that f decreases.

This approach allows also to develop optimality conditions for more general non-linearly constrained problems. We first need to formalize the notion of a "direction allowed by S", and then require that these allowed directions do not contain any descent directions for f. Formulating a good notion of "allowed direction" is possibly the most challenging part of this course!

1 Geometric optimality conditions

First we introduce the most natural definition of allowed directions.

Definition 1 (cone of feasible directions). Let $S \subset \mathbb{R}^n$ be a nonempty closed set. The cone of feasible directions for S at $x \in S$ is defined as

$$R_S(\boldsymbol{x}) := \{ \boldsymbol{p} \in \mathbb{R}^n \mid \exists \delta > 0, \boldsymbol{x} + \alpha \boldsymbol{p} \in S, \forall 0 \le \alpha \le \delta \}.$$
(2)

Thus, $R_s(\boldsymbol{x})$ is nothing else but the cone containing all feasible directions at \boldsymbol{x} . A vector $\boldsymbol{p} \in R_s(\boldsymbol{x})$ if the feasible set S contains a non-trivial part of the half-line $\boldsymbol{x} + \alpha \boldsymbol{p}, \alpha \ge 0$. Unfortunately this cone is too small to develop optimality conditions for non-linearly constrained programs¹.

Example 1. Let $S := \{ x \in \mathbb{R}^2 \mid x_2 = x_1^2 \}$. Then $R_S(x) = \emptyset$ for all $x \in S$, because the feasible set is a curved line in \mathbb{R}^2 .

We consider a significantly more complicated, but bigger and more well-behaving sets to develop optimality conditions.

Definition 2 (tangent cone). Let $S \subset \mathbb{R}^n$ be a nonempty closed set. The tangent cone for S at $x \in S$ is defined as

$$T_{S}(\boldsymbol{x}) := \{ \boldsymbol{p} \mid \exists \{\boldsymbol{x}_{k}\}_{k=1}^{\infty} \subset S, \{\lambda_{k}\}_{k=1}^{\infty} \subset (0, \infty), \text{ such that} \\ \lim_{k \to \infty} \boldsymbol{x}_{k} = \boldsymbol{x}, \\ \lim_{k \to \infty} \lambda_{k}(\boldsymbol{x}_{k} - \boldsymbol{x}) = \boldsymbol{p} \}.$$

$$(3)$$

The above definition tells us that to check whether a vector $\boldsymbol{p} \in T_S(\boldsymbol{x})$ we should check whether there is a *feasible* sequence of points $\boldsymbol{x}_k \in S$ that approaches \boldsymbol{x} , such that \boldsymbol{p} is the tangential to the sequence \boldsymbol{x}_k at \boldsymbol{x} ; such tangential vector is described as the limit of $\{\lambda_k(\boldsymbol{x}_k - \boldsymbol{x})\}$ for arbitrary positive sequence $\{\lambda_k\}$. Seen this way, $T_S(\boldsymbol{x})$ consists precisely of all the possible directions in which \boldsymbol{x} can be asymptotically approached through S.

Example 2. Let again $S := \{ x \in \mathbb{R}^2 \mid x_2 = x_1^2 \}$. Then, $T_S(\mathbf{0}) = \{ p \in \mathbb{R}^2 \mid p_2 = 0 \}$.

Example 3. Let $S := \{ \boldsymbol{x} \in \mathbb{R}^2 \mid -x_1 \leq 0; (x_1 - 1)^2 + x_2^2 \leq 1 \}$. Then, $R_S(\boldsymbol{0}) = \{ \boldsymbol{p} \in \mathbb{R}^2 \mid p_1 > 0 \}$ and $T_S(\boldsymbol{0}) = \{ \boldsymbol{p} \in \mathbb{R}^2 \mid p_1 \geq 0 \}$.

Example 4. Suppose that we have a smooth curve in S starting at $x \in S$, that is, we have a C^1 map $\gamma : [0,T] \to S$ for some T > 0. Then $\gamma'(0) \in T_S(x)$ since the definition of (one-sided) derivative is

$$\gamma'(0) = \lim_{t \to 0} \frac{\gamma(t) - \gamma(0)}{t}.$$
(4)

So if we fix any sequence $t_k \to 0$, and let $\boldsymbol{x}_k := \gamma(t_k)$, $\lambda_k = 1/t_k$, we have defined the sequences required in the definition of $T_S(\boldsymbol{x})$.

It remains to formulate a notion of descent directions to the objective function f, fortunately we can use the same characerization as in the unconstrained case.

Definition 3 (cone of descent directions). $\check{F}(\boldsymbol{x}) := \{ \boldsymbol{p} \in \mathbb{R}^n \mid \nabla f(\boldsymbol{x})^{\mathrm{T}} \boldsymbol{p} < 0 \}.$

The above examples should then make the following theorem intuitively obvious.

¹It will, however, work perfectly for *linear* programs!

Theorem 1 (geometric optimality conditions). Consider the problem (1), where $f \in C^1$. Then

$$\boldsymbol{x}^*$$
 is a local minimum of f over $S \Longrightarrow \widetilde{F}(\boldsymbol{x}^*) \cap T_S(\boldsymbol{x}^*) = \emptyset.$ (5)

Proof. See theorem 5.10 in the book.

Example 5. If we return to our example with smooth curves, we showed that for any smooth curve γ though S starting at \mathbf{x}^* , we had $\gamma'(0) \in T_S(\mathbf{x}^*)$. The geometric optimality condition reduces to the statement that $\frac{d}{dt}|_{t=0}f(\gamma(t)) \ge 0$ when applied to this tangent vector.

2 From geometric to useful optimality conditions

Now we have developed an elegant optimality condition, however there is no practical way to compute $T_S(\mathbf{x})$ directly from its definition. One way to overcome this difficulty (leading to the Fritz John conditions) is to replace the cone $T_S(\mathbf{x})$ by smaller cones.

Lemma 1. If the cone $C(\mathbf{x}) \subseteq T_S(\mathbf{x})$ for all $\mathbf{x} \in S$, then $\overset{\circ}{F}(\mathbf{x}^*) \cap C(\mathbf{x}^*) = \emptyset$ is a neccessary optimality condition.

Proof. Using the geometric optimality condition we have for any locally optimal $x^* \in S$,

$$\overset{\circ}{F}(\boldsymbol{x}^*) \cap C(\boldsymbol{x}^*) \subseteq \overset{\circ}{F}(\boldsymbol{x}^*) \cap T_S(\boldsymbol{x}^*) = \emptyset.$$

By introducing smaller cones we get *weaker* optimality conditions than the geometric optimality conditions!

Example 6. Let $C(\mathbf{x}) = R_S(\mathbf{x})$ and consider again the example $S := \{\mathbf{x} \in \mathbb{R}^2 \mid x_2 = x_1^2\}$. Since $R_S(\mathbf{x}) = \emptyset$, the optimality condition $\overset{\circ}{F}(\mathbf{x}) \cap R_S(\mathbf{x}) = \emptyset$ holds for any feasible $\mathbf{x} \in S$, which is a totally useless optimality condition.

The second way to overcome the difficulty with computing $T_S(\mathbf{x})$ is to introduce regularity conditions, or *constraint qualifications*, which will allow us to actually compute the tangent cone $T_S(\mathbf{x})$ by other means. This approach leads to the Karush-Kuhn-Tucker (KKT) conditions. The drawback of this approach is that, although the KKT conditions are equally strong as the geometric conditions, they are *less general*, i.e., they do not apply for irregular problems.

From now on we consider a problem of the form

$$\min f(\boldsymbol{x}),\tag{6a}$$

subject to
$$g_i(\boldsymbol{x}) \le 0, \quad i = 1, \dots, m$$
 (6b)

where $f : \mathbb{R}^n \to \mathbb{R}$, and $g_i : \mathbb{R}^n \to \mathbb{R}$, i = 1, ..., m are all C^1 , i.e., the feasible set $S := \{ x \in \mathbb{R}^n \mid g_i(x) \leq 0, i = 1, ..., m \}$. This allows us to define additional cones related to $T_S(x)$. Let $\mathcal{I}(x)$ denote the *active set of constraints* at x, that is,

$$\mathcal{I}(\boldsymbol{x}) := \{ i \in \{1, \dots, m\} \mid g_i(\boldsymbol{x}) = 0 \}.$$
(7)

Definition 4 (gradient cones). We define the inner gradient cone G(x) as

$$\overset{\circ}{G}(\boldsymbol{x}) := \{ \boldsymbol{p} \in \mathbb{R}^n \mid \nabla g_i(\boldsymbol{x})^{\mathrm{T}} \boldsymbol{p} < 0, \forall i \in \mathcal{I}(\boldsymbol{x}) \},$$
(8)

and the gradient cone $G(\boldsymbol{x})$ as

$$G(\boldsymbol{x}) := \{ \boldsymbol{p} \in \mathbb{R}^n \mid \nabla g_i(\boldsymbol{x})^{\mathrm{T}} \boldsymbol{p} \le 0, \forall i \in \mathcal{I}(\boldsymbol{x}) \}.$$
(9)

Note that the inner gradient cone $\check{G}(\boldsymbol{x})$ consists of all vectors \boldsymbol{p} that can be guaranteed to be descent directions of all defining functions for the active constraints, while the gradient cone $G(\boldsymbol{x})$ consists of all directions that can be guaranteed not to be ascent directions for the active constraints.

Theorem 2 (Relations between cones). For the problem (6) it holds that

$$\operatorname{cl} \overset{\circ}{G}(\boldsymbol{x}) \subseteq \operatorname{cl} R_S(\boldsymbol{x}) \subseteq T_S(\boldsymbol{x}) \subseteq G(\boldsymbol{x})$$
(10)

Proof. See Proposition 5.4 and Lemma 5.12 in the book.

3 The Fritz John conditions

We obtain the Fritz John conditions when we replace the tangent cone $T_S(\boldsymbol{x})$ in the geometric optimality condition by $\overset{\circ}{G}(\boldsymbol{x})$.

$$\boldsymbol{x}^*$$
 is locally optimal in (6) $\Longrightarrow \tilde{G}(\boldsymbol{x}) \cap \tilde{F}(\boldsymbol{x}) = \emptyset.$ (11)

Therefore, the Fritz John conditions are *weaker* than the geometric optimality conditions.

This condition looks fairly abstract, however it is possible to reformulate it to a more practical condition. The above equation states for a fixed x that a linear system of inequalities does not have solution. Fortunately, we have Farkas' Lemma for turning an inconsistent set of linear inequalities into a consistent set of inequalities.

Theorem 3 (The Fritz John conditions). If $x^* \in S$ is a local minimum in (6), then there exist multipliers $\mu_0 \in \mathbb{R}, \mu \in \mathbb{R}^m$, such that

$$\mu_0 \nabla f(\boldsymbol{x}^*) + \sum_{i=1}^m \mu_i \nabla g_i(\boldsymbol{x}^*) = \boldsymbol{0},$$
(12)

$$\mu_i g_i(\boldsymbol{x}^*) = 0, \quad i = 1, \dots, m,$$
(13)

$$\mu_0, \mu_i \ge 0, \quad i = 1, \dots, m,$$
(14)

$$(\boldsymbol{\mu}_0, \boldsymbol{\mu}^{\mathrm{T}})^{\mathrm{T}} \neq \boldsymbol{0}. \tag{15}$$

Proof. See Theorem 5.17 in the book.

The main drawback of the Fritz-John conditions is that they are too weak. The Fritz-John system contains a multiplier in front of the objective function term. If there is a solution to the Fritz-John system where the multiplier $\mu_0 = 0$, the objective function does not play any role in the system. This insight gives us at least one reason to think about regularity conditions (constraint qualifications); these conditions guarantee that any solution of the Fritz-John system must satisfy $\mu_0 \neq 0$.

Lecture 5