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Linear programs (LP) Formulation

Consider a linear program (LP):

z* =infimum ¢’x,

subjectto x € P,
where P is a polyhedron (i.e., P = {x | Ax < b}).

» A e R™*" s a given matrix, and b is a given vector,
> Inequalities interpreted entry-wise (i.e., (Ax); < (b);, i=1,..., m),

> Minimize a linear function, over a polyhedron (i.e., solution set of
finitely many linear inequality constraints).
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Polyhedra in different forms Formulation

Inequality constraints Ax < b (i.e., x € P) might look restrictive,
but in fact more general:

» x>0" «— —/"x<0",
» Ax > b <— —Ax < —b,
» Ax=b «<— Ax<b and — Ax < —b.
We often consider polyhedron in standard form:
P={xecR"|Ax=b, x >0"}.

P is a polyhedron, since P = {x € R" | Ax < b} for some A and b.
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Standard form linear programs Standard form

We say that a LP is written in standard form if

z* =infimum ¢’x,
subject to Ax = b,
x> 0.

> Meaning that P = {x € R" | Ax = b, x > 0}.
» Without loss of generality, we can assume b > 0.

» Standard form LP can in fact model all LP's.
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Rewriting to standard form LP Standard form

» For example, we can add slack variables to transform inequality
form LP into standard form LP.

minimize ¢’ x, minimize ¢’ x,
x X,s
(1) subjectto Ax<b, (I): subjectto Ax+s=b,
x>0. x>0, s>0.

x* optimal to (I) < (x*,s*) optimal to (ll) for some s* > 0.

> If some variable x; is not sign-constrained, substitute by

= xT — x~ x>
=X X g 20

» Equivalent linear programs do not need to have same feasible set.
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Rewriting to standard form, example Standard form

minimize —2x minimize —2x
subjectto x <1 subjectto x+s=1
x>0 x,s >0
S
— S
1 5
s \
| r |
ol I X 0 [ X

Equivalent linear programs, but different polyhedral!
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Linear programs (LP) Geometric interpretation

z* = infimum  ¢'x,

subjectto x € P,
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Linear programs (LP) Geometric interpretation

z* = infimum ¢'x,
subjectto x € P,

» Optimality attained at extreme point.
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Extreme point

An extreme point of a convex set S is a point that cannot be
written as a convex combination of two other points in S.

> Extreme point has algebraic equivalence: basic feasible solution
(BFS).
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Basic solution (I)

Standard form polyhedron P={x | Ax=b,x>0}, AcR™*", rank(A)=m

A point x is a basic solution if
» Ax = b, and

» the columns of A corresponding to non-zero components of x
are linearly independent

(Recall that: Ax =>"7, a;X;, where a; is column j of A.)
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Basic solution (I1)

Standard form polyhedron P={x | Ax=b,x>0}, AcR™*", rank(A)=m

Procedure for constructing basic solution x

1. Choose m linearly independent columns of A

2. Rearrange A= (B, N), with B € R™™ and rank(B) = m, so

Ax = Bxg+Nxy = b, xg = (X1,..,Xm)s XN = (Rm+1,- -, Xn)

3. Set xy = 07", denoted nonbasic variables

4. Solve xg = B~1b for basic variables xg; B is called a basis
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Example of basic solution

1 0 -1 0 O 3
P={x|Ax=b,x>0}, A=1 -1 0 -2 0|, b=|1
2 0 0 1 1 7
» Choose m linearly independent columns of A, and re-arrange A:
0 -1 0 10
B=|-1 0 -2|, N=|10
0 o0 1 2 1
> Set x4 = X5 =0 (i.e., xy = 0).
0 -1 0\ '/3 ~15
> Solvexg=B"'bh=|-1 0 =2 1]=1 -3
0 0 1 7 7

v

. L X . . .
Basic solution x = (XB). Basic solution need not be feasible.
N
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Basic feasible solution (BFS) BFS

Standard form polyhedron P={x | Ax=b,x>0}, AcR™*" rank(A)=m

A point X is a basic feasible solution (BFS) if it is a basic solution
that is feasible. That is, X is a BFS if

» x>0,
» Ax = b, and

» the columns of A corresponding to non-zero components of x
are linearly independent

—1
;:("B>, A= (B N), Ax=Bxg+Nxy=b = )'(:((,Bn—r[n))

Feasibility = xg = B~'b > 0.
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Degenerate BFS

> Consider BFS X = <;‘B> with basis B s.t. A= (B, N)
N
» By definition, xy =0 and xg = B~'b >0

» BFS X is called degenerate if some entries of xg are zero

v

Same degenerate BFS can be resulted from different basis
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Example of BFS

1 0 -1 0 0 3
P={x|Ax=bx>0}, A=|1 -1 0 -2 0], b=|1

2 0 0 1 1

Basic solution, but not feasible

~15

0 -1 0 10 -3
B=|-1 0 -2|, N=[10 ("B)_ 7
0 0 1 2 1 xn 0

0

Basic feasible solution (BFS) 3
1 0 0 1 0 2

B=[1 -1 o), n=[0 2| = ("B): 1

2 0 1 0 1 XN 0

0
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Degenerate BFS example

1 0 -1 0 O 3
P={x|Ax=bx>0}, A=|1 -1 0 -2 0], b=]1
2 0 0 1 1 7

Degenerate BFS, with two different partitions (B, N) and (B’, N'):

3

1 0 0 0 -1 1
B=|1 -2 0|, N=[-1 0| = ("B>: 0
2 1 1 0 0 XN 0

0

3

1 0 -1 0 0 1
B=(1 —2 o, M=[-10 <"B>_ 0
2 1 0 0 1 XN 0

0
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BFS = extreme point

Theorem

Assume rank(A) = m. A point X is an extreme point of polyhedron
{x € R" | Ax = b, x > 0} if and only if it is a basic feasible
solution.

Proof: We show it on blackboard, or consult Theorem 8.7 in text.
Thus,

> ‘“extreme point = basic feasible solution (BFS)

» Remember, from picture optimal solution at extreme points —
optimal solutions at BFS

> Assertion can be proven formally (we are going to do this next)
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Representation thm, standard form polyhedron BFs

v

P={xe€R"| Ax =b, x > 0} (i.e., polyhedron in standard form)

» V ={vl ..., vk} be the extreme points of P
» C={xeR"|Ax=0, x >0}
» D={d",...,d"} be the extreme directions of C

Representation Theorem (standard form polyhedron)
For x € R", x € P iff it is the sum of a convex combination of points
in V and a non-negative linear combination of points in D, i.e.

where aq, ..., 0 >0, Zf-(:la,-:land B1,...,8->0

Proof: See text Theorem 8.9 (In the proof, Th. 8.9 should be Th. 3.26).
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[llustration of representation theorem

Representation theorem provides “inner representation” of polyhedron.

» (a) x is convex combo. of v2 and y, and y is convex combo. of v!
and v¥ = x is convex combo. of v!, v2 and v3.

» (b) x is convex combo. of v! and v?, plus B»d?.

(a) Bounded case (b) Unbounded case
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Optimality of extreme points

Now we can present the theorem regarding optimality of extreme points

Theorem
Consider the standard form LP problem

z* =infimum z=c'x,

subject to x € P,
(a) This problem has a finite optimal solution if and only if P is

nonempty and z is bounded on P, meaning that cTd >0 for all
d’ € D (the set of extreme directions of {x € R" | Ax =0, x > 0})

(b) Moreover, if the problem has a finite optimal solution, then there
exists an optimal solution among the extreme points.

Proof: We show it on blackboard, or see Theorem 8.10 in text.
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Adjacent BFS's

Two BFS a and b of polyhedron P are adjacent if
Vy€eaa+ (1 —a)b, ac(0,1):

y=Au+(1-Nv, u,veP, Xe(0,1)

. u=oaya+(l—ay)b, ay €(0,1)
v=aya+(l—ay)b, a, €(0,1)

a adjacent to b and d but not ¢
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Algebraic characterization of adjacency

Theorem

Let v and v be two different BFS's corresponding to partitions

(B, N') and (B2, N?) respectively. Assume that all but one columns
of B! and B? are the same. Then u and v are adjacent BFS's.

Proof: We show it on blackboard, or see Proposition 8.13 in text.

» Theorem useful in geometric interpretation of simplex algorithm
(next lecture).

> A converse of the theorem holds (see text).
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Summary The simplex algorithm

So far, we have seen

» All linear programs can be written in standard form.
> Extreme point = basic feasible solution (BFS).

» If a standard form LP has finite optimal solution, then it has an
optimal BFS.

We finally have rationale to search only the BFS's to solve a standard
form LP. This is the main characteristic of the simplex algorithm.
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