Lecture 8

Linear programming (I) - intro \& geometry

Emil Gustavsson

Fraunhofer-Chalmers Centre
November 20, 2017

Linear programs (LP)

Consider a linear program (LP):

$$
\begin{aligned}
z^{*}= & \operatorname{infimum} \quad \boldsymbol{c}^{\top} \boldsymbol{x}, \\
& \text { subject to } \quad \boldsymbol{x} \in P,
\end{aligned}
$$

where P is a polyhedron (i.e., $P=\{x \mid A x \leq b\}$).

- $A \in \mathbb{R}^{m \times n}$ is a given matrix, and b is a given vector,
- Inequalities interpreted entry-wise (i.e., $\left.(A x)_{i} \leq(b)_{i}, i=1, \ldots, m\right)$,
- Minimize a linear function, over a polyhedron (i.e., solution set of finitely many linear inequality constraints).

Inequality constraints $A x \leq b$ (i.e., $x \in P$) might look restrictive, but in fact more general:

- $x \geq \mathbf{0}^{n} \Longleftrightarrow-I^{n} \boldsymbol{x} \leq 0^{n}$,
- $A x \geq b \Longleftrightarrow-A x \leq-b$,
- $A x=b \Longleftrightarrow A x \leq b$ and $-A x \leq-b$.

We often consider polyhedron in standard form:

$$
P=\left\{\boldsymbol{x} \in \mathbb{R}^{n} \mid \boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}, \boldsymbol{x} \geq \mathbf{0}^{n}\right\} .
$$

P is a polyhedron, since $P=\left\{\boldsymbol{x} \in \mathbb{R}^{n} \mid \tilde{A} \boldsymbol{x} \leq \tilde{b}\right\}$ for some \tilde{A} and \tilde{b}.

Standard form linear programs

We say that a LP is written in standard form if

$$
\begin{aligned}
& z^{*}=\operatorname{infimum~} \quad \boldsymbol{c}^{\top} \boldsymbol{x}, \\
& \text { subject to } \quad \boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}, \\
& \boldsymbol{x} \geq \mathbf{0} .
\end{aligned}
$$

- Meaning that $P=\left\{\boldsymbol{x} \in \mathbb{R}^{n} \mid \boldsymbol{A x}=\boldsymbol{b}, \boldsymbol{x} \geq \mathbf{0}\right\}$.
- Without loss of generality, we can assume $b \geq \mathbf{0}$.
- Standard form LP can in fact model all LP's.
- For example, we can add slack variables to transform inequality form LP into standard form LP.

\boldsymbol{x}^{\star} optimal to (I) $\Longleftrightarrow\left(\boldsymbol{x}^{\star}, s^{\star}\right)$ optimal to (II) for some $s^{\star} \geq \mathbf{0}$.
- If some variable x_{j} is not sign-constrained, substitute by

$$
x_{j}=x_{j}^{+}-x_{j}^{-}, \quad x_{j}^{+}, x_{j}^{-} \geq 0
$$

- Equivalent linear programs do not need to have same feasible set.

$$
\begin{array}{cl}
\operatorname{minimize} & -2 x \\
\text { subject to } & x \leq 1 \\
& x \geq 0
\end{array}
$$

$$
\begin{array}{cl}
\operatorname{minimize} & -2 x \\
\text { subject to } & x+\mathrm{s}=1 \\
& x, s \geq 0
\end{array}
$$

Equivalent linear programs, but different polyhedra!

$$
\begin{aligned}
z^{*}= & \text { infimum } \quad \boldsymbol{c}^{T} \boldsymbol{x}, \\
& \text { subject to } \quad \boldsymbol{x} \in P,
\end{aligned}
$$

$$
\begin{aligned}
z^{*}= & \text { infimum } \quad \boldsymbol{c}^{T} \boldsymbol{x}, \\
& \text { subject to } \quad \boldsymbol{x} \in P,
\end{aligned}
$$

- Optimality attained at extreme point.

Extreme point

An extreme point of a convex set S is a point that cannot be written as a convex combination of two other points in S.

- Extreme point has algebraic equivalence: basic feasible solution (BFS).

Basic solution (I)

Standard form polyhedron $P=\{x \mid A x=b, x \geq \mathbf{0}\}, A \in \mathbb{R}^{m \times n}, \operatorname{rank}(A)=m$

A point \bar{x} is a basic solution if

- $\boldsymbol{A} \overline{\boldsymbol{x}}=\boldsymbol{b}$, and
- the columns of \boldsymbol{A} corresponding to non-zero components of $\overline{\boldsymbol{x}}$ are linearly independent
(Recall that: $\boldsymbol{A} \overline{\boldsymbol{x}}=\sum_{j=1}^{n} \boldsymbol{a}_{j} \bar{x}_{j}$, where \boldsymbol{a}_{j} is column j of \boldsymbol{A}.)

Basic solution (II)

Standard form polyhedron $P=\{x \mid A x=b, x \geq \mathbf{0}\}, A \in \mathbb{R}^{m \times n}, \operatorname{rank}(A)=m$

Procedure for constructing basic solution $\overline{\boldsymbol{x}}$

1. Choose m linearly independent columns of A
2. Rearrange $A=(B, N)$, with $B \in \mathbb{R}^{m \times m}$ and $\operatorname{rank}(B)=m$, so

$$
A x=B x_{B}+N x_{N}=b, \quad x_{B}=\left(\bar{x}_{1}, \ldots, \bar{x}_{m}\right), x_{N}=\left(\bar{x}_{m+1}, \ldots, \bar{x}_{n}\right)
$$

3. Set $x_{N}=\mathbf{0}^{n-m}$, denoted nonbasic variables
4. Solve $x_{B}=B^{-1} b$ for basic variables $x_{B} ; B$ is called a basis

$$
P=\{x \mid A x=b, x \geq \mathbf{0}\}, \quad A=\left(\begin{array}{ccccc}
1 & 0 & -1 & 0 & 0 \\
1 & -1 & 0 & -2 & 0 \\
2 & 0 & 0 & 1 & 1
\end{array}\right), \quad b=\left(\begin{array}{l}
3 \\
1 \\
7
\end{array}\right)
$$

- Choose m linearly independent columns of A, and re-arrange A :

$$
B=\left(\begin{array}{ccc}
0 & -1 & 0 \\
-1 & 0 & -2 \\
0 & 0 & 1
\end{array}\right), \quad N=\left(\begin{array}{ll}
1 & 0 \\
1 & 0 \\
2 & 1
\end{array}\right)
$$

- Set $\bar{x}_{4}=\bar{x}_{5}=0$ (i.e., $x_{N}=\mathbf{0}$).
- Solve $x_{B}=B^{-1} b=\left(\begin{array}{ccc}0 & -1 & 0 \\ -1 & 0 & -2 \\ 0 & 0 & 1\end{array}\right)^{-1}\left(\begin{array}{l}3 \\ 1 \\ 7\end{array}\right)=\left(\begin{array}{c}-15 \\ -3 \\ 7\end{array}\right)$
- Basic solution $\overline{\boldsymbol{x}}=\binom{x_{B}}{x_{N}}$. Basic solution need not be feasible.

Basic feasible solution (BFS)

Standard form polyhedron $P=\{x \mid A x=b, x \geq \mathbf{0}\}, A \in \mathbb{R}^{m \times n}, \operatorname{rank}(A)=m$

A point \bar{x} is a basic feasible solution (BFS) if it is a basic solution that is feasible. That is, \bar{x} is a BFS if

- $\bar{x} \geq \mathbf{0}$,
- $\boldsymbol{A} \overline{\boldsymbol{x}}=\boldsymbol{b}$, and
- the columns of \boldsymbol{A} corresponding to non-zero components of $\overline{\boldsymbol{x}}$ are linearly independent
$\overline{\bar{x}}=\binom{\boldsymbol{x}_{B}}{\boldsymbol{x}_{N}}, \quad A=\left(\begin{array}{ll}B & N\end{array}\right), A \overline{\boldsymbol{x}}=B x_{B}+N x_{N}=b \Longrightarrow \overline{\boldsymbol{x}}=\binom{B^{-1} b}{\mathbf{0}^{n-m}}$
Feasibility $\Longrightarrow \boldsymbol{x}_{B}=B^{-1} b \geq \mathbf{0}$.
- Consider BFS $\overline{\boldsymbol{x}}=\binom{\boldsymbol{x}_{B}}{\boldsymbol{x}_{N}}$ with basis B s.t. $A=(B, N)$
- By definition, $x_{N}=\mathbf{0}$ and $x_{B}=B^{-1} b \geq \mathbf{0}$
- BFS \bar{x} is called degenerate if some entries of x_{B} are zero
- Same degenerate BFS can be resulted from different basis

Example of BFS

$$
P=\{x \mid A x=b, x \geq \mathbf{0}\}, \quad A=\left(\begin{array}{ccccc}
1 & 0 & -1 & 0 & 0 \\
1 & -1 & 0 & -2 & 0 \\
2 & 0 & 0 & 1 & 1
\end{array}\right), \quad b=\left(\begin{array}{l}
3 \\
1 \\
7
\end{array}\right)
$$

Basic solution, but not feasible

$$
B=\left(\begin{array}{ccc}
0 & -1 & 0 \\
-1 & 0 & -2 \\
0 & 0 & 1
\end{array}\right), \quad N=\left(\begin{array}{ll}
1 & 0 \\
1 & 0 \\
2 & 1
\end{array}\right) \Longrightarrow\binom{x_{B}}{x_{N}}=\left(\begin{array}{c}
-15 \\
-3 \\
7 \\
0 \\
0
\end{array}\right)
$$

Basic feasible solution (BFS)

$$
B=\left(\begin{array}{ccc}
1 & 0 & 0 \\
1 & -1 & 0 \\
2 & 0 & 1
\end{array}\right), \quad N=\left(\begin{array}{cc}
-1 & 0 \\
0 & -2 \\
0 & 1
\end{array}\right) \Longrightarrow\binom{x_{B}}{x_{N}}=\left(\begin{array}{l}
3 \\
2 \\
1 \\
0 \\
0
\end{array}\right)
$$

Degenerate BFS example

$$
P=\{x \mid A x=b, x \geq \mathbf{0}\}, \quad A=\left(\begin{array}{ccccc}
1 & 0 & -1 & 0 & 0 \\
1 & -1 & 0 & -2 & 0 \\
2 & 0 & 0 & 1 & 1
\end{array}\right), \quad b=\left(\begin{array}{l}
3 \\
1 \\
7
\end{array}\right)
$$

Degenerate BFS, with two different partitions (B, N) and $\left(B^{\prime}, N^{\prime}\right)$:

$$
\begin{aligned}
B=\left(\begin{array}{ccc}
1 & 0 & 0 \\
1 & -2 & 0 \\
2 & 1 & 1
\end{array}\right), \quad N=\left(\begin{array}{cc}
0 & -1 \\
-1 & 0 \\
0 & 0
\end{array}\right) \Longrightarrow\binom{x_{B}}{x_{N}}=\left(\begin{array}{l}
3 \\
1 \\
0 \\
0 \\
0
\end{array}\right) \\
B^{\prime}=\left(\begin{array}{ccc}
1 & 0 & -1 \\
1 & -2 & 0 \\
2 & 1 & 0
\end{array}\right), \quad N^{\prime}=\left(\begin{array}{cc}
0 & 0 \\
-1 & 0 \\
0 & 1
\end{array}\right) \Longrightarrow\binom{x_{B}}{x_{N}}=\left(\begin{array}{l}
3 \\
1 \\
0 \\
0 \\
0
\end{array}\right)
\end{aligned}
$$

Theorem

Assume $\operatorname{rank}(\boldsymbol{A})=m$. A point $\overline{\boldsymbol{x}}$ is an extreme point of polyhedron $\left\{\boldsymbol{x} \in \mathbb{R}^{n} \mid \boldsymbol{A x}=\boldsymbol{b}, \boldsymbol{x} \geq \mathbf{0}\right\}$ if and only if it is a basic feasible solution.

Proof: We show it on blackboard, or consult Theorem 8.7 in text.
Thus,

- "extreme point = basic feasible solution (BFS)".
- Remember, from picture optimal solution at extreme points \Longrightarrow optimal solutions at BFS
- Assertion can be proven formally (we are going to do this next)

Representation thm, standard form polyhedron BFS

- $P=\left\{\boldsymbol{x} \in \mathbb{R}^{\boldsymbol{n}} \mid \boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}, \boldsymbol{x} \geq \mathbf{0}\right\}$ (i.e., polyhedron in standard form)
- $V=\left\{\boldsymbol{v}^{1}, \ldots, \boldsymbol{v}^{k}\right\}$ be the extreme points of P
- $C=\left\{\boldsymbol{x} \in \mathbb{R}^{\boldsymbol{n}} \mid \boldsymbol{A x}=\mathbf{0}, \boldsymbol{x} \geq \mathbf{0}\right\}$
- $D=\left\{\boldsymbol{d}^{1}, \ldots, \boldsymbol{d}^{r}\right\}$ be the extreme directions of C

Representation Theorem (standard form polyhedron)

For $\boldsymbol{x} \in \mathbb{R}^{n}, \boldsymbol{x} \in P$ iff it is the sum of a convex combination of points in V and a non-negative linear combination of points in D, i.e.

$$
\boldsymbol{x}=\sum_{i=1}^{k} \alpha_{i} \boldsymbol{v}^{i}+\sum_{j=1}^{r} \beta_{j} \boldsymbol{d}^{j}
$$

where $\alpha_{1}, \ldots, \alpha_{k} \geq 0, \sum_{i=1}^{k} \alpha_{i}=1$ and $\beta_{1}, \ldots, \beta_{r} \geq 0$

Proof: See text Theorem 8.9 (In the proof, Th. 8.9 should be Th. 3.26).

Illustration of representation theorem

Representation theorem provides "inner representation" of polyhedron.

- (a) x is convex combo. of v^{2} and y, and y is convex combo. of v^{1} and $v^{3} \Longrightarrow x$ is convex combo. of v^{1}, v^{2} and v^{3}.
- (b) x is convex combo. of v^{1} and v^{2}, plus $\beta_{2} d^{2}$.

(a) Bounded case

(b) Unbounded case

Optimality of extreme points

Now we can present the theorem regarding optimality of extreme points

Theorem

Consider the standard form LP problem

$$
\begin{aligned}
z^{*}= & \text { infimum } \quad z=\boldsymbol{c}^{T} \boldsymbol{x} \\
& \text { subject to } \boldsymbol{x} \in P
\end{aligned}
$$

(a) This problem has a finite optimal solution if and only if P is nonempty and z is bounded on P, meaning that $\boldsymbol{c}^{T} \boldsymbol{d}^{j} \geq \mathbf{0}$ for all $\boldsymbol{d}^{j} \in D$ (the set of extreme directions of $\left\{\boldsymbol{x} \in \mathbb{R}^{n} \mid \boldsymbol{A x}=\mathbf{0}, \boldsymbol{x} \geq \mathbf{0}\right\}$)
(b) Moreover, if the problem has a finite optimal solution, then there exists an optimal solution among the extreme points.

Proof: We show it on blackboard, or see Theorem 8.10 in text.

Adjacent BFS's

Two BFS a and b of polyhedron P are adjacent if $\forall y \in \alpha a+(1-\alpha) b, \alpha \in(0,1):$

$$
\begin{aligned}
& y=\lambda u+(1-\lambda) v, u, v \in P, \lambda \in(0,1) \\
\Longrightarrow \quad & \left\{\begin{array}{l}
u=\alpha_{u} a+\left(1-\alpha_{u}\right) b, \alpha_{u} \in(0,1) \\
v=\alpha_{v} a+\left(1-\alpha_{v}\right) b, \alpha_{v} \in(0,1)
\end{array}\right.
\end{aligned}
$$

a adjacent to b and d but not c

Algebraic characterization of adjacency

Theorem

Let u and v be two different BFS's corresponding to partitions (B^{1}, N^{1}) and (B^{2}, N^{2}) respectively. Assume that all but one columns of B^{1} and B^{2} are the same. Then u and v are adjacent BFS's.

Proof: We show it on blackboard, or see Proposition 8.13 in text.

- Theorem useful in geometric interpretation of simplex algorithm (next lecture).
- A converse of the theorem holds (see text).

So far, we have seen

- All linear programs can be written in standard form.
- Extreme point $=$ basic feasible solution (BFS).
- If a standard form LP has finite optimal solution, then it has an optimal BFS.

We finally have rationale to search only the BFS's to solve a standard form LP. This is the main characteristic of the simplex algorithm.

