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FormulationLinear programs (LP)

Consider a linear program (LP):

z∗ = infimum cTx ,
subject to x ∈ P,

where P is a polyhedron (i.e., P = {x | Ax ≤ b}).

I A ∈ Rm×n is a given matrix, and b is a given vector,

I Inequalities interpreted entry-wise (i.e., (Ax)i ≤ (b)i , i = 1, . . . ,m),

I Minimize a linear function, over a polyhedron (i.e., solution set of
finitely many linear inequality constraints).
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FormulationPolyhedra in different forms

Inequality constraints Ax ≤ b (i.e., x ∈ P) might look restrictive,
but in fact more general:

I x ≥ 0n ⇐⇒ −I nx ≤ 0n,

I Ax ≥ b ⇐⇒ −Ax ≤ −b,

I Ax = b ⇐⇒ Ax ≤ b and − Ax ≤ −b.

We often consider polyhedron in standard form:

P = {x ∈ Rn | Ax = b, x ≥ 0n}.

P is a polyhedron, since P = {x ∈ Rn | Ãx ≤ b̃} for some Ã and b̃.
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Standard formStandard form linear programs

We say that a LP is written in standard form if

z∗ = infimum cTx ,
subject to Ax = b,

x ≥ 0.

I Meaning that P = {x ∈ Rn | Ax = b, x ≥ 0}.

I Without loss of generality, we can assume b ≥ 0.

I Standard form LP can in fact model all LP’s.
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Standard formRewriting to standard form LP

I For example, we can add slack variables to transform inequality
form LP into standard form LP.

(I ) :

minimize
x

cTx ,
subject to Ax ≤ b,

x ≥ 0.

(II ) :

minimize
x,s

cTx ,

subject to Ax + s = b,
x ≥ 0, s ≥ 0.

x? optimal to (I) ⇐⇒ (x?, s?) optimal to (II) for some s? ≥ 0.

I If some variable xj is not sign-constrained, substitute by

xj = x+j − x−j , x+j , x
−
j ≥ 0

I Equivalent linear programs do not need to have same feasible set.
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Standard formRewriting to standard form, example

minimize −2x
subject to x ≤ 1

x ≥ 0

minimize −2x
subject to x + s = 1

x , s ≥ 0

f

x0 1

P

f

x0 1

P1

s

Equivalent linear programs, but different polyhedra!

TMA947 – Lecture 8 Linear programming (I) - intro & geometry 6 / 23



Geometric interpretationLinear programs (LP)

z∗ = infimum cTx ,
subject to x ∈ P,

P

ac
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Geometric interpretationLinear programs (LP)

z∗ = infimum cTx ,
subject to x ∈ P,

P

c

x

I Optimality attained at extreme point.
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BFSExtreme point

An extreme point of a convex set S is a point that cannot be
written as a convex combination of two other points in S .

P

I Extreme point has algebraic equivalence: basic feasible solution
(BFS).
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BFSBasic solution (I)

Standard form polyhedron P ={x | Ax =b, x≥0}, A∈Rm×n, rank(A)=m

A point x̄ is a basic solution if

I Ax̄ = b, and

I the columns of A corresponding to non-zero components of x̄
are linearly independent

(Recall that: Ax̄ =
∑n

j=1 aj x̄j , where aj is column j of A.)
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BFSBasic solution (II)

Standard form polyhedron P ={x | Ax =b, x≥0}, A∈Rm×n, rank(A)=m

Procedure for constructing basic solution x̄

1. Choose m linearly independent columns of A

2. Rearrange A = (B,N), with B ∈ Rm×m and rank(B) = m, so

Ax = BxB+NxN = b, xB = (x̄1, . . . , x̄m), xN = (x̄m+1, . . . , x̄n)

3. Set xN = 0n−m, denoted nonbasic variables

4. Solve xB = B−1b for basic variables xB ; B is called a basis
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BFSExample of basic solution

P = {x | Ax = b, x ≥ 0}, A =

1 0 −1 0 0
1 −1 0 −2 0
2 0 0 1 1

 , b =

3
1
7


I Choose m linearly independent columns of A, and re-arrange A:

B =

 0 −1 0
−1 0 −2
0 0 1

 , N =

1 0
1 0
2 1


I Set x̄4 = x̄5 = 0 (i.e., xN = 0).

I Solve xB = B−1b =

 0 −1 0
−1 0 −2
0 0 1

−13
1
7

 =

−15
−3
7


I Basic solution x̄ =

(
xB
xN

)
. Basic solution need not be feasible.
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BFSBasic feasible solution (BFS)

Standard form polyhedron P ={x | Ax =b, x≥0}, A∈Rm×n, rank(A)=m

A point x̄ is a basic feasible solution (BFS) if it is a basic solution
that is feasible. That is, x̄ is a BFS if

I x̄ ≥ 0,

I Ax̄ = b, and

I the columns of A corresponding to non-zero components of x̄
are linearly independent

x̄ =

(
xB

xN

)
, A =

(
B N

)
, Ax̄ = BxB + NxN = b =⇒ x̄ =

(
B−1b
0n−m

)
Feasibility =⇒ xB = B−1b ≥ 0.
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BFSDegenerate BFS

I Consider BFS x̄ =

(
xB

xN

)
with basis B s.t. A = (B,N)

I By definition, xN = 0 and xB = B−1b ≥ 0

I BFS x̄ is called degenerate if some entries of xB are zero

I Same degenerate BFS can be resulted from different basis
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BFSExample of BFS

P = {x | Ax = b, x ≥ 0}, A =

1 0 −1 0 0
1 −1 0 −2 0
2 0 0 1 1

 , b =

3
1
7


Basic solution, but not feasible

B =

 0 −1 0
−1 0 −2
0 0 1

 , N =

1 0
1 0
2 1

 =⇒
(

xB

xN

)
=


−15
−3
7
0
0


Basic feasible solution (BFS)

B =

1 0 0
1 −1 0
2 0 1

 , N =

−1 0
0 −2
0 1

 =⇒
(

xB

xN

)
=


3
2
1
0
0
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BFSDegenerate BFS example

P = {x | Ax = b, x ≥ 0}, A =

1 0 −1 0 0
1 −1 0 −2 0
2 0 0 1 1

 , b =

3
1
7


Degenerate BFS, with two different partitions (B,N) and (B ′,N ′):

B =

1 0 0
1 −2 0
2 1 1

 , N =

 0 −1
−1 0
0 0

 =⇒
(

xB

xN

)
=


3
1
0
0
0



B ′ =

1 0 −1
1 −2 0
2 1 0

 , N ′ =

 0 0
−1 0
0 1

 =⇒
(

xB

xN

)
=


3
1
0
0
0
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BFSBFS = extreme point

Theorem
Assume rank(A) = m. A point x̄ is an extreme point of polyhedron
{x ∈ Rn | Ax = b, x ≥ 0} if and only if it is a basic feasible
solution.

Proof: We show it on blackboard, or consult Theorem 8.7 in text.

Thus,

I “extreme point = basic feasible solution (BFS)”.

I Remember, from picture optimal solution at extreme points =⇒
optimal solutions at BFS

I Assertion can be proven formally (we are going to do this next)
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BFSRepresentation thm, standard form polyhedron

I P = {x ∈ Rn | Ax = b, x ≥ 0} (i.e., polyhedron in standard form)

I V = {v 1, . . . , v k} be the extreme points of P

I C = {x ∈ Rn | Ax = 0, x ≥ 0}
I D = {d 1, . . . ,d r} be the extreme directions of C

Representation Theorem (standard form polyhedron)
For x ∈ Rn, x ∈ P iff it is the sum of a convex combination of points
in V and a non-negative linear combination of points in D, i.e.

x =
k∑

i=1

αiv i +
r∑

j=1

βjd j ,

where α1, . . . , αk ≥ 0,
∑k

i=1 αi = 1 and β1, . . . , βr ≥ 0

Proof: See text Theorem 8.9 (In the proof, Th. 8.9 should be Th. 3.26).
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BFSIllustration of representation theorem

Representation theorem provides “inner representation” of polyhedron.

I (a) x is convex combo. of v2 and y , and y is convex combo. of v1

and v3 =⇒ x is convex combo. of v1, v2 and v3.

I (b) x is convex combo. of v1 and v2, plus β2d
2.

v1

v2

v3

v4

x

y

(a) Bounded case

v1

v2

d1

d2

x
y

(b) Unbounded case
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BFSOptimality of extreme points

Now we can present the theorem regarding optimality of extreme points

Theorem
Consider the standard form LP problem

z∗ = infimum z = cTx ,
subject to x ∈ P,

(a) This problem has a finite optimal solution if and only if P is

nonempty and z is bounded on P, meaning that cTd j ≥ 0 for all
d j ∈ D (the set of extreme directions of {x ∈ Rn | Ax = 0, x ≥ 0})

(b) Moreover, if the problem has a finite optimal solution, then there
exists an optimal solution among the extreme points.

Proof: We show it on blackboard, or see Theorem 8.10 in text.
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BFSAdjacent BFS’s

Two BFS a and b of polyhedron P are adjacent if
∀ y ∈ αa + (1− α)b, α ∈ (0, 1):

y = λu + (1− λ)v , u, v ∈ P, λ ∈ (0, 1)

=⇒

{
u = αua + (1− αu)b, αu ∈ (0, 1)

v = αva + (1− αv )b, αv ∈ (0, 1)

a adjacent to b and d but not c

P

a

b

cd
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BFSAlgebraic characterization of adjacency

Theorem
Let u and v be two different BFS’s corresponding to partitions
(B1,N1) and (B2,N2) respectively. Assume that all but one columns
of B1 and B2 are the same. Then u and v are adjacent BFS’s.

Proof: We show it on blackboard, or see Proposition 8.13 in text.

I Theorem useful in geometric interpretation of simplex algorithm
(next lecture).

I A converse of the theorem holds (see text).
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The simplex algorithmSummary

So far, we have seen

I All linear programs can be written in standard form.

I Extreme point = basic feasible solution (BFS).

I If a standard form LP has finite optimal solution, then it has an
optimal BFS.

We finally have rationale to search only the BFS’s to solve a standard
form LP. This is the main characteristic of the simplex algorithm.
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