Final Exam for discrete mathematics D3
TMA965
October 22, 2003
Location: V
Time: 8:45-12:45
Jour: Jeff Steif 772 3513 or 0702298318
Ingen hjalpmedel : No books, notes or calculators

For grades of 3,4,0or 5, 12,18 or 24 needed.

You may use binomial coefficients in your answers. So, for example,
expressions like “15 choose 6” meaning (165) do not need to be simplified. If
a question has different parts, each part is weighted equally. You may do

the exam in English or Swedish. Write clearly and not too small.



1. (5 points).

Consider the ways to give 18 toys to 8 children.

(a). How many ways can this be done if both toys and children are distin-
guishable and there is no requirement that each child gets at least one toy
but there is a requirement that the first child gets exactly 2 toys, the second
child gets exactly 3 toys and the third child gets no toys?

(b). How many ways can this be done if children are distinguishable, toys
are indistinguishable and there is no requirement that each child gets at
least one toy but there is a requirement that the first child gets at least 2
toys?

(c). Let (18,8) be our Stirling number of the second kind as presented in
class. Which question concerning these toys and children would have the

answer (18,8)7

Solution:
1(a). (4)(¥)5' since we first have to choose two toys to give to the first
child, then, after that, we have to choose three toys from the remaining 16
to give to the second child and then, after that, we can give the remaining
13 toys to any of the last 5 children.

1(b). (%) since we first give the first child 2 toys (doesn’t matter which)
and then we distribute 16 toys to 8 children in any way we want. The latter
number of ways is (273) from class.

1(c). How many ways can we give 18 distinguishable toys to 8 indistin-

guishable children so that every child gets at least 1 toy?



2. (5 points).

State the max-flow/min-cut theorem. It is not enough to just state the
theorem: you need to first define all terms and concepts that appear in the
statement of the theorem. You do NOT need to introduce concepts that
arise in the proof or say anything at all about how the proof of this theorem

is done.

Solution:

See book.



3. (5 points).

ﬁ, the set of integers modulo 20007

Consider
(a). How is this object defined and how many elements does it have?

(b). Does [15] have a multiplicative inverse in 5257

(c). Does [7] have a multiplicative inverse in 5257

(d). If you answered yes to either (b) or (c), find the inverses for those you

claimed did have an inverse using the Euclidean algorithm.

Solution:
3(a). It is the set of equivalence classes when we take the set of integers and
define the equivalence relation where x and y are related if 2000 divides x-y.
There are 2000 elements (equivalence classes).
3(b). No, since 15 and 2000 are not relatively prime.
3(c). Yes, since 7 and 2000 are relatively prime.
3(d). The Euclidean algorithm allows one to compute the gcd of 7 and 2000
(which is 1) and at the same time will yield integers x and y such that
7z + 2000y = 1. (See the book on how you get this x and y). When you
apply it, you will get that x =-857 and y=3. Hence 7(—857) + 2000(3) = 1.
Hence the inverse of 7 is -857 or if you prefer, 1143.



4. (5 points).
The following is the exact same set up done in class.

Consider a 4x4 board which has 15 tiles in the 16 places. (The tiles are
labelled 1 through 15.] One can move things around only by moving a tile 1
step horizontally or vertically to an adjacent empty square (there is 1 empty

square of course). Can you transform the configuration
21714

3 10 15 5
9 x 11 12
86 13 4

to the configuration

1789
3 x 15 11
14 10 12 5

2413 6

You need to explain your answer.

* here denotes the empty slot.

Solution:

If we could do this, we would need to make an odd number of moves since



we would make one more up move than down move and the same number

of right and left moves. On the other hand this permutation is
(2,1,7,8)(3)(4,6)(5,11,12)(9, 14)(10, ) (13)(15).

This is a product of 3+ 1+2+ 1+ 1 = 8 transpositions and hence it cannot
be written as a product of an odd number of transpositions. Hence it is

impossible.



5. (5 points).

(a) Suppose identity cards are manufactured from square cards ruled with a
4z4 grid, with two of the sixteen squares punched out. How many different
cards can be produced in this way? (We consider of course two such punched
cards the same if one can be obtained from the other by rotating or flipping
over the card).

(b) Suppose identity cards are manufactured from square cards ruled with
a 4x4 grid, with two of the sixteen squares colored red or blue. How many
different cards can be produced in this way? (We consider of course two
colored cards the same if one can be obtained from the other by rotating or

flipping over the card).

Solution:

(a). Let X be the set of cards with 2 holes punched. There are (%))
elements in X. There are 8 rigid motions of the square. id, o, 02,03 (where
o is rotation by 90 degrees), g5 and g which are the reflections about the
two diagonals, and g7 and gg which are the reflection about the vertical and
horizontal lines through the card, If F'(g) is the set of fixed elements for g, we
get [F(id)| = (), |F(0)] = |[F(o®)| = 0,|F ()| = 8, |F(gs)| = |F(g5)| = 12
and |F(g7)| = |F(gs)| = 8. By our formula for the number of orbits, we get

that the number of orbits is

(D) +8+12+12+8+8
- =

21.

(b). The set X is now the set of all cards where 2 squares are colored
red or blue. X has 4(126) elements. The set of transformations are the

same as above. It is not hard to verify that with this new X, we have



F(id)| = 4(F), |F(0)] = [F(0®)| = 0, F(0?)| = 16,|F(g5)| = |F(gs)| = 36
and |F(g7)| = |F(gs)| = 16. By our formula for the number of orbits, we get
an answer of 75. The reason that |F(gs)| = 36 is that there are (}) cards
with the two holes on the diagonal of reflection and these can be colored in
any of 4 ways and there are 6 cards with the two holes not on the diagonal
of reflection and these can be colored in any of only 2 ways since the two

holes have to be colored the same.



6. (5 points).

(a). Give a combinatorial proof for the equality
ny (n-—1 n n—1
k) k k-1

(b). Give a combinatorial proof for the equality

3" = zn: (Z) 2k

k=0

when 1 < k < n.

Solution:

We had done this in class. 1(a). Break all k element subsets of {1,...,n}
into two classes, those not containing 1 and those containing 1. There are
(".1) of the first type and (7~) of the second type.

2(a). There are 3" sequences of length n with alphabet 1,2,3. Break them
up into n classes Cy,C1,...,C, where C} are those sequences where the
number of 1’s plus the number of 2’s is k. |Cy| = (})2¥ since we first have to
choose where the k 1’s and 2’s together will go (there are (}) choices) and
then, after that, we have to decide which of these k locations will be 1’s and

which will be 2’s (there are 2¥ choices). Since 3" = >"%_ |C|, the formula

is combinatorially proved.



