TMA970, Inledande matematisk analys, 2017/18

Aktuella meddelanden

Nu finns här årets första dugga och facit till den.

Välkomna till årets upplaga av kursen Inledande matematisk analys! 

Kursens schema finns i TimeEdit.

Läsåret för de nya studenterna inleds med repetition av gymnasiematematiken. Om det skulle vara så att du olyckligtvis inte kan följa repetitionsverksamheten på högskolan, följ samma planering hemma. Jobba ordentligt, det är jätteviktigt för de fortsatta studierna att man hänger med från början. Både planering och kursmaterial hittar du här på kurshemsidan. Repetitionskursen samläses med AT1. Arbeta gärna även med materialet om felaktiga lösningar.

Här hittar du den preliminära planeringen för de två repetitionsveckorna.

Repetitionsmaterial:
Rolf Pettersson, Förberedande kurs i matematik, kap. 1--4 samt facit (RP) 
Komplexa tal
(KT)


Här hittar du felaktiga lösningar som demonstrerar typiska studentfel.
(Årtalet i filen står för den senaste uppdateringen.)


OBS! För att härleda ett av standardgränsvärdena behövs uppskattningen
sin x < x < tan x
i intervallet (0, π /2). Observera att bokens bevis av den andra olikheten inte är helt korrekt.

Lärare

Kursansvarig: Jana Madjarova, jana@chalmers.se, ankn. 3531

Övningsledare (prel.):

F1

Björn Martinsson

 bjomart@chalmers.se

F2

John Moberg

mojohn@student.chalmers.se

F3

Björn Martinsson

F4

John Moberg

TM1

Georg Bökman

bokman@student.chalmers.se

TM2

Georg Bökman


F1, F2, TM2: tisdagar    8--10 i ML1, ML2, ML3 respektive
F3, F4, TM1  tisdagar  10--12 i ML1, ML2, ML3 respektive


Grupper:
F: F1  F2  F3  F4
TM: TM1 alla med jämna personnummer
       TM2 alla med udda personnummer

Lärare repetitionskurs: Gustav Magnusson, bogustavmagnusson@gmail.com

Ansvarig för bonusuppgifterna i MATLAB: Jacques Huitfeldt, jacques@chalmers.se

Kurslitteratur

Arne Persson, Lars-Christer Böiers: Analys i en variabel, Studentlitteratur, Lund.
                   
Övningshäfte till Analys i en variabel, Studentlitteratur, Lund (senaste upplagan, 2010 eller senare).

Kompletterande material: Induktion och arcusfunktioner,  Lösning arcus  

Program


Preliminär (optimistisk) veckoplanering för föreläsningarna

Vecka Avsnitt Innehåll
      1(0; App.B)
Kap. 1.1-11
Beteckningar. Talsystem. Delbarhet. Polynom. Algebraiska ekvationer. Binomialsatsen. Elementära funktioner.
      2Kap. 1.12
Kap. 2.1-4
Elementära funktioner (forts.)
Matematisk induktion och binomialsatsen.
Gränsvärden och kontinuitet. Talet e. Standardgränsvärden.
      3Kap. 1; 2
Kap. 2.5
Standardgränsvärden (forts.) Användningar av gränsvärden.
      4Kap. 3.1-6; Kap. 3.8Derivator. Differentialer.
      5Kap. 4

Kap. 5
Användningar av derivator (och gränsvärden).
Primitiva funktioner.
      6Kap. 5
Kap. 6.1-4
Primitiva funktioner (forts.). Riemannintegralen.
      7Kap. 6.5
Kap. 7
ev. ur App. C
Riemannintegralen (forts.)
Generaliserade integraler. Användningar av integraler.
ev. Kontinuerliga funktioners egenskaper. 
      8Reserv. Repetition.

Demonstration: Exemplen som demonstreras tas främst från följande lista

Vecka Avsnitt Uppgiftsnummer
       1fö: Kap. 1
rö: Kap. 1
Felaktiga lösninga
r
fö: 86a, 87f;
rö:  5, 8;
1, 2, 4, 6, 12;
Urval ur gamla duggor.
        2fö: Induktion
Arcus

Kap. 2
rö: Induktion
Kap. 1
fö: 3,4,8; Bernoullis olikhet; Newtons binomialsats;
1a, 2c, 4a;
36l, 3c, 8bhi, 9, 11gh, 12, 17b;
rö: 2, 9b;
73, 87de, 76c.
        3fö: Induktion
Kap. 2

rö:  Arcus
Kap. 2
fö: Uppgift från övningstenta/tenta;
14df, 20, 21, 33ad, 36eh, 51b;

rö:  2b;
15, 8j, 14ce, 46a.
        4  fö: Kap. 3
rö: Kap. 2
Kap. 3
fö: 11a, 13ac, 14de, 16, 17, 27b;
rö: 19;
12d, 19.
        5fö: Kap. 2
Kap. 4
Kap. 5
rö: Kap. 3
Kap. 4
fö: 28ab;
1e, 5a, 12ab(c), 13ab, 15d, 31 (två sätt);
2f, 9h, 11f, 17df, 18, 23b, 24a, 39a;

rö:
35;
5a, 27, 32.
        6fö: Kap. 5
Kap. 6
rö: Kap. 5
fö:  "svåraste" partialbråket, 43, 51f, 40cf, 41ace;
6, 11, 12d, 13, 19b, 21b;
rö: 30b, 37.
        7fö: Kap. 6
Kap. 7
: Kap. 6

Kap. 7
fö: 26b, 32, 33abc, 42, 36;
 20, 25, (29a, 30);

rö: 17a, 18c;
2, 29b, 19.
        8 
rö:
Kap. 7
fö: Reserv. Repetition. Tentamensuppgifter.
rö: 14.
Tentamensuppgifter.

Rekommenderade övningsuppgifter för egen räkning

Vecka Uppgiftsnummer
      1App. B: B.1, B.2, B.6;  Kap. 1: 35, 36, 37, 38; Kap. 3: 9, 10. Gamla duggor.
      2Induktion: 5, 6, 7, 9a.
Kap. 1: 1-8, 14, 15, 65-68, 85, 87abc, 88-91, 76b, 115, 116, 117.
      3Induktion: 10a, 11.  (Fibonacci: 1-3); (Fibonacci bevis)
Arcusfunktioner: 1ö, 2a, 3;  Kap. 1: 122, 123;
Kap. 2: 4, 16, 14a, 43, 46ö, 47.
      4Arcusfunktioner: 4b, 6.
Kap. 2: 11ab, 43, 14bce, 8fk, 36ö;
Kap. 3: 1, 3, 4, 5, 2ab, 11hi, 12ce, 13, 18.
      5Kap. 4: 6bc, 8, 25, 3,  4b, 12de, 13bc,19;
Kap. 5: (Helst alla!)  1-9, 10ceh, 15cd, 17cfg, 20, 22,  23a, 24bd, 25, 26.
      6Kap. 5: 11, 16, 27, 28, 37ö, 40ö, 41ö, 51ö;
Kap. 6: 3, 5, 9, 12a-c, 45, 14, 15, 16, 19.
      7Kap. 6: 25, 28, 29d, 31, 32, 41, 33def;
Kap. 7: 1, 60, 28, 16, 17, 21; Induktion: 15. 
      8Reserv. Repetition. Gamla tentor.


Föreläsningar - dagbok

Här kommer föreläsningarnas faktiska innehåll att listas, dag för dag.
Dag
Avsnitt Innehåll
28/8

Beteckningar: om konventioner och nyttan med dem. Något om matematikens grunder: primitiva begrepp, axiom, exempel.. Naturliga tal. Att fundera på: vad är avstånd mellan två punkter?
30/8

Talsystem och utvidgningar - naturliga tal, heltal, rationella tal, komplexa tal. "Önskelista" vid utvidgningar. Sats: Det finns inget rationellt tal vars kvadrat är 2 (med bevis; motsägelsebevis). Från "bakhuvud" till axiom. Konsistens, modeller av en teori i en annan. Att fundera på: definition av addition för natturliga tal?
31/8

Antal element i en mängd, oändliga mängder, ordinaltal Alef noll och kontinuum. Cantors diagonalmetod för att visa att de reella talen är ouppräkneligt många.
Delbarhet vid heltalsdivision, kvot och rest. Polynom - division, kvot och rest. Faktorsatsen för polynom (med bevis).

1/9

Algebrans fundamentalsats (utan bevis). Faktorisering av polynom i komplexa förstagradsfaktorer (med bevis). Antal  komplexa nollställen till polynom, räknade med multiplicitet. Funktioner. Injektivitet, surjektivitet, bijektivitet. Invers funktion. Kap. 1: 86a.
4/9

Kap. 1: 87f. Elementära funktioner. Potensfunktioner, exponentialfunktioner och logaritmer. Matematisk induktion. Induktionsaxiomet. Induktionsbevis. Exempel: I 2"a",summan av de n första udda talen. Skillnaden mellan bevis och härledning.
6/9Induktionsbevis: I 3. Härledning av resultatet.  Teleskoperande summor. Bernoullis olikhet. Hantering av olikheter. Arkusfunktionerna - definitioner och små exempel. Att fundera på: inversa funktioners grafer?
7/9Arcusfunktioner: 1a, 2c. Inversa funktioners grafer. Monotona och strängt monotona funktioner. Monotonicitet och inversa funktioner. Begränsade funktioner.
8/9Newtons binomialsats - formulering och kombinatoriskt bevis. Binomialkoefficienter, permutationer och kombinationer. Gränsvärden: intuitivt. Rationella funktioner, deras gränsvärde när x--> oändligheten, exempel. De sju "obestämbara" typerna av gränsvärden. Kap. 2: 36f.
11/9Arcusfunktioner: 4a. Gränsvärden: definition. Omgivningar och epsilon-deltadefinition. OBS! Punkten x går mot tas bort från omgivningen. Grafisk illustration. Lista över standardgränsvärden.
13/9Gränsvärdesdefinitionen - variationer. Jämförelse mellan exponentialfunktioner och potenser i oändligheten; mellan logaritmer och potenser i oändligheten. Gränsvärdet sin x / x, när x går mot noll: uppskattningar nära noll.
14/9Formel för sinus av halva vinkeln. Gränsvärdet för cos x när x går mot noll. Härledning av gränsvärdet sin x / x, när x går mot nolll med hjälp av instägningsregeln (lemmat om de två poliserna) Prioriteringsregler vid potenser av potenser. Kap. 2: 8hi, 12, 14df, 36eh, 51b;
15/9Inre, yttre, rand- och hopningspunkter för en mängd, och. gränsövergångar. Existens av gränsvärden för monotona och (lämpligt) begränsade funktioner. Existens av gränsvärdet som ger talet e. Variationer av det gränsvärdet.
18/9De sista standardgränsvärdena. Kap. 2: 33a. "Gamla skulder":: vad har vi lämnat till senare? Satser om gränsvärden (räknelagar, variabelbyte, instängningsregeln), kontinuitet och satser om kontinuitet. Räknelagar, bevis för addition och multiplikation (epsilon-delta).
20/9Mer epsilon-delta - repetition från föregående tillfälle. Definition av kontinuitet. Punkten måste tillhöra definitionsmängden, funktionen 1/x. Utvidgning av sin x/x i 0 så att den blir kontinuerlig. Tillämpning av kontinuitet: lokalisering av ekvationers lösningar.
21/9 Kontinuerliga funktioner: Satser om kontinuerliga funktioner - räknelagar. Satsen om mellanliggande värden (utan bevis). Satsen om existens av max och min av kontinuerlig funktion på slutet och begränsat intervall (utan bevis). De elementära funktionerna är kontinuerliga, bevis för heltalspotenser, kvadratrötter och sinusfunktionen. 
22/9nduktion: 8, 10a. Arcusfunktioner: från övningsskrivningen  2016.
25/9Utförlig lösning av övningstentan från 23/9. Kap. 2: 9ab, 17b, 19, 20, 21.,
.



Studieresurser

Datorlaborationer och övningar med Matlab

Datorlaborationerna ligger i parallella kurser (Fysikingenjörens verktyg F och Matematisk programvara TM). Kunskaperna från dessa är nödvändiga för att lösa bonusuppgifterna i MATLAB som hör till kursen Inledande matematisk analys. Länk till årets bonusuppgifter kommer senare. Läs noga reglerna för examination av bonusuppgifterna.

Regler för examination av bonusuppgifter i MATLAB inom kurserna TMA970, TMA976, MVE035, för programmen Teknisk fysik och Teknisk matematik.

1. Bonusuppgifterna får lösas i grupp. Lösningarna examineras dock individuellt, framför skärmen, vid särskilda examinationstillfällen.
2. Student som önskar få sina lösningar examinerade vid ett visst examinationstillfälle anmäler sig i förväg hos examinator (Jacques Huitfeldt).
Mer information kommer ges tillsammans med bonusuppgifterna.
3. Vid examinationstillfället skall studenten kunna visa legitimation.
4. Vid examinationstillfället skall studenten kunna redogöra för sin lösning samt kunna modifiera koden för att lösa närbesläktade varianter av problemen.
5. Bonuspoängen gäller fram till nästa tillfälle kursen ges.
6. Bonusuppgifterna får göras av studenter som gått kursen tidigare år.


Referenslitteratur

  1. Material utvecklat av MV som ger en kortfattad introduktion till Matlab
  2. MATLAB for Engineers, Holly More
    Ger en introduktion till Matlab och kräver inledningsvis ingen matrisalgebra. Är utmärkt för självstudier.
  3. MATLAB-beräkningar inom teknik och naturvetenskap, Per Jönsson
    Kräver kunskaper i Matrisalgebra. Innehåller lite mer avancerade övningar och modelleringsuppgifter. Är utmärkt som referenslitteratur/uppslagsbok.

Kurskrav

Lärandemål (efter fullgjord kurs ska studenten kunna)

- förstå de grundläggande begreppen och definitionerna i matematisk analys;
- kunna bevisa de mest grundläggande satserna inom matematisk analys i en variabel;
- använda matematisk induktion för att bevisa identiteter och olikheter;
- göra omskrivningar av uttryck som innehåller logaritmer och inverserna till de trigonometriska funktionerna;
- använda en kombination av standardgränsvärden för att hitta andra gränsvärden;
- analysera funktioner i syfte att rita deras grafer;
- använda standardmetoder för att hitta primitiva funktioner till vissa kategorier elementära funktioner;
- använda analysens huvudsats för att beräkna Riemannintegraler;
- tillämpa Riemannintegraler på kurvlängd, area och volym;
- använda jämförelsemetoder för att avgöra konvergens/divergens av generaliserade integraler;
- (i samråd med parallella kurser) använda MATLAB för enkla numeriska beräkningar inom envariabelanalys;
- utföra egna bevis;
- lösa problem som kombinerar två eller flera av ovanstående förmågor.

Kursens mål finns även angivna i kursplanen.

Varje tentamensskrivning består av åtta uppgifter, varav sex problemuppgifter och två teorifrågor. Minst en av teorifrågorna kommer från följande lista:
  Sats 1.3      Faktorsatsen för polynom
  Sats 1.4      Eventuella rationella nollställen till polynom
  Sats 1.6      Binomialsatsen
  Sats 1.8      Ett standardgränsvärde 
  Sats 2.1-5   Räkneregler för gränsvärden
  Sats 2.6      Talföljden vars gränsvärde kallas e
  Sats 3.1      Deriverbarhet implicerar kontinuitet
  Sats 3.3      Kedjeregeln
  Sats 3.4      Derivatan av en invers funktion
  Sats 3.5      Derivatan av exponentialfunktionen
  Sats 3.9,10 Derivatan av några trigonometriska funktioner
  Sats 3.13    Om derivatan i lokala extrempunkter
  Sats 3.14    Medelvärdessatsen
  Sats 3.15    Om derivatan för en funktion är noll på ett intervall, så  är funktionen konstant på detta intervall
  Sats 5.1      Partiell integration (primitiva funktioner)
  Sats 5.2      Variabelsubstitution (primitiva funktioner)
  Sats 6.7      Integralkalkylens medelvärdessats
  Sats 6.9      Analysens huvudsats
  Sats 6.10    Insättningsformeln
  Sats 6.11    Jämförelsesatsen (generaliserade integraler)

Duggor

Dugga lördagen i lv 2, 9 september, 13:00-15:00 (2 timmar), i SB-huset. Duggan är ej obligatorisk. Den kommer att bestå av 15 uppgifter av typ A (flervalsfrågor, 1p för rätt svar), fem av typ B (endast svar, 2p för rätt svar), och en av typ C (fullständig lösning krävs, max 5p).
         
Duggan ger bonuspoäng enligt  nedan

1 bonuspoäng för 10--19 poäng
2 bonuspoäng för 20--29 poäng
3 bonuspoäng för 30 poäng
Bonuspoängen kan användas t.o.m. augusti 2018.


Duggan 2014 och facit 2014
Duggan 2015 och facit 2015
Duggan 2016 och facit 2016


Övningsskrivning lördagen i lv 4, 23 september,  8:30-10:30 (2 timmar), SB. Övningsskrivningen är på totalt 25 poäng, utformad som en halv tentamensskrivning (tre problemuppgifter och en terifråga). Övningsskrivningen är ej obligatorisk. Den ger maximalt 4 bonuspoäng som kan användas t.o.m. augusti 2018, enligt nedan
1 bonuspoäng för 6--11 poäng
2 bonuspoäng för 12--17 poäng
3 bonuspoäng för 18--23 poäng
4 bonuspoäng för 24--25 poäng


För mer information om bonuspoängen, se nedan.


Övningstenta september 2011
Övningstenta september 2012

Övningstenta september 2013
Övningstenta september 2014
Övningstenta september 2015
Övningstenta september 2016
     

Examination

Bonusgivande examinationsmoment under lp 1:
   
 Dugga lö lv 2 (se ovan)
     Övningsskrivning lö lv 4 (se ovan)
     Bonusuppgifter MATLAB (se ovan)

Observera dock att man vid ett tentamenstillfälle inte kan tillgodoräkna sig mer än

5 bonuspoäng, varav maximalt 3 från den första duggan och övningsskrivningen
tillsammans.

        Skriftlig tentamen, fyra timmar (kombinerad teori- och problemskrivning),
        bestående av 8 uppgifter som sammanlagt kan ge 50 poäng, varav teoriuppgifterna
        ger maximalt 14 poäng. Betygsgränser: för godkänt krävs minst 20 poäng medan
        gränserna för betyg 4 resp. 5 är 30 poäng resp. 40 poäng.

       Tentamenstillfällen:  
  26 Okt 2017 fm J,  21 Dec 2017 em J,  31 Aug 2018 fm J

Rutiner kring tentamina

I Chalmers Studentportal kan du läsa om när tentor ges och om vilka regler som gäller kring att tentera på Chalmers.

Vid tentamen ska du kunna uppvisa giltig legitimation och kvitto på erlagd kåravgift.

Du kan själv gå in i Ladok, via inloggning i Studentportalen, för att se dina resultat.

Granskning vid ordinarie tentamen:
Då det är praktiskt möjligt ordnas ett separat granskningstillfälle av tentamen. Tidpunkt för detta meddelas på kurshemsidan. Den som inte kan delta vid granskningen kan efter granskningstillfället hämta och granska sin tenta på Matematiska vetenskapers studieexpedition, se information om öppettider. Kontrollera att Du har fått rätt betyg och att poängsumman stämmer. Eventuella klagomål på rättningen ska lämnas skriftligt på expeditionen, där det finns en blankett till hjälp.

Granskning vid omtentamen:
Tentorna granskas och hämtas ut på Matematiska vetenskapers studieexpedition, se information om öppettider. Eventuella klagomål på rättningen ska lämnas skriftligt på expeditionen, där det finns en blankett till hjälp.

Kursvärdering

I början av kursen bör minst två studentrepresentanter ha utsetts för att tillsammans med lärarna genomföra kursvärderingen. Värderingen sker genom samtal mellan lärare och studentrepresentanter under kursens gång samt vid ett möte efter kursens slut då enkätresultatet diskuteras och rapport skrivs.

Se följande mall för Kursvärdering i studentportalen.

Kursutvärderare läsåret 17/18:

Adrian Lundell: adrlund@student.chalmers.se

Jonas Bohlin: jonbohl@student.chalmers.se

Gamla tentor

Tenta oktober 2011
Lösningar oktober 2011

Tenta januari 2012
Lösningar januari 2012

Tenta oktober 2012
Lösningar oktober 2012


Tenta januari 2013 
Lösningar januari 2013
OBS! Jag har gjort en tabbe i lösningen, i uppgift 2b ska det bytas plats på (sin x)^2 och sin^2 x där de förekommer sist.

Tenta augusti 2013
Lösningar augusti 2013

Tenta oktober 2013
Lösningar oktober 2013

Tenta januari 2014
Lösningar januari 2014

Tenta augusti 2014
Lösningar augusti 2014

Tenta oktober 2014
Lösningar oktober 2014

Tenta januari 2015
Lösningar januari 2015

Tenta augusti 2015
Lösningar augusti 2015

Tenta oktober 2015
Lösningar oktober 2015

Tenta januari 2016
Lösningar januari 2016

Tenta augusti 2016
Lösningar augusti 2016

Tenta oktober 2016
Lösningar oktober 2016


Tenta december 2016
Lösningar december 2016


Tenta augusti 2017
Lösningar augusti 2017


Här hittar du fler problem som kan lösas med (förslagvis) matematisk induktion, samt lite lösningshjälp.

Här hittar du lite fler "teoretiska" problem.