Application Example: Controllability and Observability

In control engineering you often represent a system under study in a state-space form.

Figure 1. A system in state-space form.
The following two equations describe the system:

$$
\left\{\begin{array}{l}
\mathbf{x}(t)=F \mathbf{x}(t-1)+B \mathbf{u}(t-1)+\mathbf{v}(t-1) \tag{1}\\
\mathbf{y}(t)=H \mathbf{x}(t)+\mathbf{e}(t)
\end{array}\right.
$$

and the notation is
u a K-dimensional input signal
x the N-dimensional state vector of the system
v an N-dimensional disturbance vector, "system noise"
F the system matrix, $N \times N$
B an $N \times K$ matrix
y an L-dimensional output signal
e an L-dimensional disturbance, "measurement noise"
H the observation matrix, $N \times L$

Now, controllability concerns the following question ${ }^{1}$:
Given a system at rest, $\mathbf{x}(0)=0$, and in the absence of noise, $\mathbf{v}(t)=0 \forall t$, can you force $\mathbf{x}(t)$ to an arbitrary position in \mathbb{R}^{N} by a proper choice of the input sequence $\mathbf{u}(0), \ldots, \mathbf{u}(t-1)$?

[^0]Let us see what happens:

$$
\begin{aligned}
& \mathbf{x}(1)=B \mathbf{u}(0) \\
& \mathbf{x}(2)=F \mathbf{x}(1)+B \mathbf{u}(1)=F B \mathbf{u}(0)+B \mathbf{u}(1) \\
& \vdots \\
& \mathbf{x}(t)=F^{t-1} B \mathbf{u}(0)+\cdots+B \mathbf{u}(t-1)= \\
&=\left[F^{t-1} B F^{t-2} B \cdots B\right]\left[\mathbf{u}^{T}(0) \mathbf{u}^{T}(1) \cdots \mathbf{u}^{T}(t-1)\right]^{T}
\end{aligned}
$$

As you are free to choose the input sequence freely, the question of controllability boils down to the question concerning the range-space of the matrix

$$
C_{t}=\left[\begin{array}{llll}
F^{t-1} B & F^{t-2} B & \cdots & B
\end{array}\right] .
$$

We make the following observations:

$$
\operatorname{Rank}\left(C_{t}\right) \leq \operatorname{Rank}\left(C_{t+1}\right) \leq N
$$

as C_{t} has N rows, and going from t to $t+1$ gives you more columns so that the rank is non-decreasing. There is no need to study instances $t>N$, due to the Cayley-Hamilton theorem, which states that any matrix satisfies its own characteristic function. Here is the proof:

Let λ be an eigenvalue of F. Then

$$
\operatorname{det}(F-\lambda I)=0
$$

\Longleftrightarrow

$$
f_{N} \lambda^{N}+\ldots+f_{0}=0 \text { for some set } f_{n}, n=0, \ldots, N
$$

Multiply by the corresponding eigenvector from the right, and replace $\lambda \mathbf{g}$ by $F \mathbf{g}$. Proceed until no λ 's remain.

$$
\left(f_{N} F^{N}+\ldots+f_{0} I\right) \mathbf{g}=0
$$

and we conclude

$$
f_{N} F^{N}+\ldots+f_{0} I=0
$$

which proves the theorem.
Now, returning to the original problem, we see that going beyond $t=N$ will not increase the rank of C_{t}, as you add columns that are linearly dependent on already existing ones. We have now proven the following:

The system described by equation (1) is controllable if and only if the controllability matrix $C=\left[\begin{array}{lllll}F^{N-1} B & F^{N-2} B & \cdots & F B & B\end{array}\right]$ has full rank.

Note 1: This is by no means trivial, as in most applications $\operatorname{dim} \mathbf{u}<\operatorname{dim} \mathbf{x}$.

Observability concerns the following. Given a system without noise, $\mathbf{v}(t) \equiv 0$ and $\mathbf{e}(t) \equiv 0$, and with no input, $\mathbf{u} \equiv 0$, is there any initial position $\mathbf{x}(0)=\mathbf{s}$ such that the system is 'silent', i.e. $\mathbf{y}(t)=0, t=0,1, \ldots$ Here we go:

$$
\begin{aligned}
\mathbf{y}(0) & =H \mathbf{x}(0) \\
\mathbf{y}(1) & =H \mathbf{x}(1)=H F \mathbf{x}(0) \\
& \vdots \\
\mathbf{y}(t) & =H \mathbf{x}(t)=H F^{t} \mathbf{x}(0)
\end{aligned}
$$

Put in vector form:

$$
\left[\begin{array}{c}
\mathbf{y}(0) \\
\mathbf{y}(1) \\
\vdots \\
\mathbf{y}(t)
\end{array}\right]=\left[\begin{array}{c}
H \\
H F \\
\vdots \\
H F^{t}
\end{array}\right] \mathbf{x}(0)=O_{t} \mathbf{x}(0)
$$

Just as in the preceding case, it suffices to study $t=N-1$ - remember the Cayley-Hamilton theorem. The vector on the left hand side is identically zero iff $\mathbf{x}(0)$ is in the null space of the observability matrix:

The system described by equation (1) is observable if and only if the observability matrix $O=\left[\begin{array}{c}H \\ H F \\ \vdots \\ H F^{N-1}\end{array}\right]$ has full rank.

Note 2: A system is observable iff there are no silent states.
Note 3: For an observable system, the initial state can be calculated from the observations $\mathbf{y}(0), \mathbf{y}(1), \ldots$.

Application Example: MUSIC

The following example is a version of an algorithm, MUSIC, with reference to problems in communication. The acronym MUSIC stands for MUltiple SIgnal Classification. This is the scenario: we have a scalar signal, $y(t)$, which is the sum of L complex sinusoids in additive noise,

$$
y(t)=\sum_{\ell=1}^{L} b_{\ell} e^{j \omega_{\ell} t}+e(t)
$$

The task at hand is to estimate the frequencies ω_{ℓ} from the observations $y(t)$. We start by stacking some observations in a vector:

$$
\begin{aligned}
\mathbf{y}(t) & =\left[\begin{array}{c}
y(t) \\
y(t-1) \\
\vdots \\
y(t-M)
\end{array}\right]=\text { use the model of } y(t)= \\
& =\left[\begin{array}{ccc}
1 & 1 \\
e^{-j \omega_{1}} & e^{-j \omega_{L}} \\
\vdots & \cdots & \vdots \\
\vdots & \vdots \\
e^{-j M \omega_{1}} & e^{-j M \omega_{L}}
\end{array}\right]\left[\begin{array}{c}
b_{1} e^{j \omega_{1} t} \\
\vdots \\
\vdots \\
\vdots \\
b_{L} e^{j \omega_{L} t}
\end{array}\right]+\left[\begin{array}{c}
e(t) \\
\vdots \\
\vdots \\
\vdots \\
e(t-M)
\end{array}\right]
\end{aligned}
$$

We note with pleasure that the matrix involved is vandermonde, and thus has full rank for ω_{ℓ} distinct. Introduce the notations

$$
\mathbf{a}(\omega)=\left[\begin{array}{llll}
1 & e^{-j \omega} & \cdots & e^{-j M \omega}
\end{array}\right]^{H},
$$

and

$$
s_{\ell}=b_{\ell} e^{j \omega_{\ell} t}
$$

so that

$$
\mathbf{y}(t)=\left[\begin{array}{lll}
\mathbf{a}\left(\omega_{1}\right) & \cdots & \mathbf{a}\left(\omega_{L}\right)
\end{array}\right]\left[\begin{array}{c}
s_{1} \\
\vdots \\
s_{L}
\end{array}\right]+\text { noise }=A \mathbf{s}+\text { noise. }
$$

Now, we make some observations:

- The steering vector $\mathbf{a}(\omega)$ is a curve in \mathbb{C}^{M+1}.
- For $M \geq L-1,\left\{\mathbf{a}\left(\omega_{\ell}\right)\right\}_{\ell=1}^{L}$ span an L-dimensional subspace of \mathbb{C}^{M+1}, the signal subspace.
- The set $\left\{\omega_{\ell}\right\}_{\ell=1}^{L}$ is the solution to the intersection of $\mathbf{a}(\omega)$ and the signal subspace. The set is unique as the vandermonde matrix has full rank equal to L.

Note 1: The signal $\sum_{\ell=1}^{L} b_{\ell} e^{j \omega_{\ell} t}$ is a rank L signal.
In conclusion, it seems to be a good idea to estimate the signal subspace. One way to do this is to estimate the correlation matrix

$$
\hat{R}=\frac{1}{N} \sum_{n=1}^{N} \mathbf{y}(n) \mathbf{y}^{H}(n) .
$$

As this is a course on linear algebra, we disregard the influence of the noise.

$$
\begin{aligned}
\hat{R} & =\frac{1}{N} \sum_{n=1}^{N} A \mathbf{s}(n) \mathbf{s}^{H}(n) A^{H}= \\
& =A\left[\frac{1}{N} \sum_{1}^{N} \mathbf{s}(n) \mathbf{s}^{H}(n)\right] A^{H}=A \hat{R}_{\mathbf{s}} A^{H} .
\end{aligned}
$$

Hooray, we may guess that the range-space of \hat{R} equals the range-space of A, equals the signal subspace ${ }^{2}$.

Note 2: When noise is present, assume that it is white and small. Then take the L largest eigenvalues of \hat{R} (\hat{R} Hermitian implies real-valued non-negative eigenvalues). The corresponding eigenvectors span the estimate of the signal subspace.

Let S be the matrix of dimensions $(M+1) \times L$ that has orthonormal columns that span the signal subspace. As the norm of $\mathbf{a}(\omega)$ equals $M+1$, independent of ω, the desired solution is found by finding the L maxima to the following:

$$
\max _{\omega}\left|\mathbf{a}^{H}(\omega) S\right|^{2}
$$

To produce nice plots, you can construct the MUSIC pseudo-spectrum

$$
P(\omega)=\frac{1}{1-\frac{\left|\mathbf{a}^{H}(\omega) S\right|^{2}}{|\mathbf{a}(\omega)|^{2}}}
$$

Please run the m-file musicapp in Matlab

[^1]```
% musicapp.m
% a simple application of the MUSIC algorithm
clear
N=200;
sigma=1;
t=(1:N)';
s=sin(5*2*pi/N*t)+sin(23*2*pi/N*t); % a rank 4 signal
data=s+sigma*randn(N,1);
% estimate the autocorrelation matrix
M=19;
R=zeros(M+1,M+1);
for n=1:N-M
R=R+data(n:n+M)*data(n:n+M)';
end
R=R/(N-M);
% calculate the rangespace of R
[U S V]=svd(R);
Neig=4; % the 4 first left eigenvectors
Ssub=U(:,1:Neig); % span the signal subspace.
% calculate the pseudospectrum
m=1;
steer=0:M;
for angle=-pi:pi/100:pi
aflip=exp(-j*angle*steer); % the transposed steering vector for argument angle
dum=(norm(aflip*Ssub))^2/(M+1); % norm(aflip)^2=M+1
P(m)=1/(1-dum); % this screws up if you remove the noise
m=m+1;
end
% plot the data and the pseudospectrum.
figure(1), clf, hold on
plot(data)
title('Two sinusoids in white noise')
figure(2), clf, hold on
plot([-pi:pi/100:pi],P)
title('MUSIC pseudospectrum')
% There are a lot of experiments to be carried out.
% Vary N
% Vary sigma - too much noise and you may miss the signal subspace.
% Vary Neig, we do not always know the rank of the signal subspace
% Vary M, it affects resolution
```


## Application Example: ESPRIT

Refer back to the example presenting MUSIC to find the relevant model for the data

$$
\mathbf{y}(t)=A \mathbf{s}(t)+e(t)
$$

where the steering matrix $A$ is

$$
\begin{aligned}
A(\omega) & =\left[\mathbf{a}\left(\omega_{1}\right) \cdots\right. \\
& =\left[\begin{array}{cc}
1 & \left.\mathbf{a}\left(\omega_{L}\right)\right]= \\
e^{-j \omega_{1}} & e^{-j \omega_{L}} \\
\vdots & \vdots \\
\vdots & \vdots \\
e^{-j M \omega_{1}} & e^{-j M \omega_{L}}
\end{array}\right] .
\end{aligned}
$$

Please note the vandermonde structure. Now, partition $A$ in two different ways:

$$
A=\left[\begin{array}{c}
A_{1} \\
\text { last row }
\end{array}\right]=\left[\begin{array}{c}
\text { first row } \\
A_{2}
\end{array}\right] .
$$

It follows

$$
A_{2}=A_{1} \Phi,
$$

where

$$
\operatorname{diag}(\Phi)=\left(e^{-j \omega_{1}}, \ldots, e^{-j \omega_{L}}\right)
$$

So, to estimate the frequencies, find $\Phi$.
Unfortunately, we do not have $A$. We can estimate, however, the signal subspace from the data, and construct the matrix $S$ that spans the same subspace as does $A$, as demonstrated in the derivation of the MUSIC algorithm. This means that there exists a square full rank transformation matrix that relates $A$ and $S$ :

$$
S=A T
$$

Now partition $S$ as we did with $A$. Then

$$
\begin{aligned}
& S_{1}=A_{1} T \\
& S_{2}=A_{2} T,
\end{aligned}
$$

and

$$
A_{2}=A_{1} \Phi
$$

implies

$$
S_{2} T^{-1}=S_{1} T^{-1} \Phi,
$$

which in turn leads to

$$
S_{2}=S_{1} T^{-1} \Phi T=S_{1} \Psi .
$$

As $\Psi$ and $\Phi$ are related by a similarity transform, they have the same eigenvalues, and we find the frequencies by finding the eigenvalues of $\Psi$. In practice, you need to solve

$$
S_{2}=S_{1} \Psi
$$

in a least squares sense. In Matlab code, it is really simple:

$$
\Psi=S_{1} \backslash S_{2}
$$

will do it.
Please run the m-file espritapp in Matlab.

```
% espritapp.m
% a simple application of the ESPRIT algorithm
clear
N=200;
sigma=1;
t=(1:N)';
s=sin(5*2*pi/N*t)+\operatorname{sin}(23*2*pi/N*t); % a rank 4 signal
data=s+sigma*randn(N,1);
% estimate the autocorrelation matrix
M=19;
R=zeros(M+1,M+1);
for n=1:N-M
R=R+data(n:n+M)*data(n:n+M)';
end
R=R/(N-M);
% calculate the rangespace of R, and the signal subspace
[U S V]=svd(R);
Neig=4; % the 4 first left eigenvectors
Ssub=U(:,1:Neig); % span the signal subspace.
% now for the ESPRIT version
S1=Ssub(1:M,:);
S2=Ssub(2:M+1,:);
poles=eig(S1\S2);
% plot the poles
figure(1), clf, axis equal, hold on
plot(real(poles),imag(poles),'rp')
t=0:1000;
t=2*pi/1000*t;
plot(cos(t),sin(t),'b',[-1.2 1.2], [0 0],'k',[0 0],[-1.2 1.2],'k')
title('Detected frequencies')
% Check the angles, should be 5 (23) /200 *2 *pi
% There are a lot of experiments to be carried out.
% Vary N
% Vary sigma - too much noise and you may miss the signal subspace.
% Vary Neig, we do not always know the rank of the signal subspace
% Vary M
```


[^0]:    ${ }^{1}$ Actually, the problem formulated should be called reachability or controllability from the origin. Most often it is simply called controllability.

[^1]:    ${ }^{2}$ To really understand this you should take a course in signal processing.

