The Fourier Matrix

Let us first recall the Discrete Fourier Transform, DFT. Given a sequence of numbers (real or complex) $x_{0}, x_{1}, \ldots, x_{N-1}$, the DFT of the sequence is

$$
X_{k}=\sum_{n=0}^{N-1} x_{n} e^{-j 2 \pi \frac{k n}{N}}, \quad k=0,1, \ldots, N-1 .
$$

There is an inverse transform:

$$
x_{n}=\frac{1}{N} \sum_{n=0}^{N-1} X_{k} e^{j 2 \pi \frac{k n}{N}}, \quad n=0,1, \ldots, N-1 .
$$

So, in the general case, the DFT is a mapping of an N-dimensional complex vector $\left[x_{0}, \ldots, x_{N-1}\right]^{T}$, to an N-dimensional complex vector $\left[X_{0}, \ldots, X_{N-1}\right]^{T}$. As the mapping is linear, there must exist something we can call a Fourier matrix. Here it is (almost):

$$
A=\left[\begin{array}{lllll}
1 & 1 & 1 & \cdots & 1 \\
1 & a^{1 \cdot 1} & a^{2 \cdot 1} & & a^{(N-1) \cdot 1} \\
1 & a^{1 \cdot 2} & a^{2 \cdot 2} & & a^{(N-1) \cdot 2} \\
1 & & & & \\
1 & a^{1(N-1)} & a^{2(N-1)} & & a^{(N-1)(N-1)}
\end{array}\right]
$$

where

$$
a=e^{-j \frac{2 \pi}{N}} .
$$

Exercise. Check that for $\mathbf{x}=\left[x_{0}, \ldots, x_{N-1}\right]^{T}$, the vector \mathbf{X} given by

$$
\mathbf{X}=A \mathbf{x}
$$

is $\mathbf{X}=\left[X_{0}, \ldots, X_{N-1}\right]^{T}$.
The inverse DFT can also be represented by a matrix. Please construct it. We immediately note some "problems":

- The columns of the Fourier matrix all have the same norm, namely \sqrt{N}. Please check.
- The "inverse Fourier matrix" is not the inverse of the Fourier matrix, there is a scaling problem.

To fix these problems, the Fourier matrix is re-defined as follows:

$$
F=\frac{1}{\sqrt{N}}\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & a^{1 \cdot 1} & \\
& & \\
1 & & a^{(N-1)(N-1)}
\end{array}\right]
$$

Now things become simpler. Verify that

$$
F^{H} F=I,
$$

where F^{H} is the Hermitian transpose, i.e. transpose and complex conjugate of the elements. Hint:

- Show that the columns of F all have unit length.
- Show that the columns of F are orthogonal.

This result verifies that $F^{H}=F^{-1}$ represents the inverse DFT. It also shows that F is a norm-preserving linear mapping from \mathbb{C}^{N} to \mathbb{C}^{N}, and that all eigenvalues of F fall on the unit circle. To further study the eigenvalues of F, the simplest way is to note the interesting property of F^{2} (please verify):

$$
F^{2}=\left[\begin{array}{ccccc}
1 & 0 & \cdots & \cdots & 0 \\
0 & & & & 1 \\
\vdots & & 0 & . & \\
\vdots & & . & & \\
0 & 1 & & &
\end{array}\right]
$$

Oops, F^{2} is a very special permutation matrix. The structure is that of a circulant Hankel matrix, to be described in another short note. Now, square F-square:

$$
\left(F^{2}\right)^{2}=F^{4}=I .
$$

Oops again. This means that all eigenvalues of F are found in the set $\{ \pm 1, \pm j\}$.

Note. The Fourier matrix will reappear in the notes on Toeplitz and Hankel structures.

You should run the m-file fourmat in Matlab when you have studied the leaflets on Fourier, Toeplitz and Hankel matrices.

```
% fourmat.m, the Fourier matrix.
clear
N=4;
F=dftmtx(N)/sqrt(N); % Matlab does not make F norm-preserving (unitary)
% construct F*F as a Hankel matrix
dum=zeros((N+1),1);
dum(2)=1;
F2=hankel(dum(2:N+1),dum(1:N));
sprintf('Test on F*F %0.3g',norm(F2-F*F,'fro'))
pause
% construct Ia
Ia=hankel(flipud(dum(2:N+1)));
% constuct a general ciculant Toeplitz matrix
dum=randn((N+1),1);
dum(N+1)=dum(1);
T=toeplitz(dum(1:N),flipud(dum(2:N+1)));
% and the Hankel
H=T*Ia;
% illustrate how to diagonalize these matrises
sprintf('Test if FT*hermit(F) is diagonal %0.3g',norm(F*T*F'-diag(diag(F*T*F')),'fr
sprintf('Test if FHF is diagonal %0.3g',norm(F*H*F-diag(diag(F*H*F)),'fro'))
pause
```

```
% compare the diagonal of F*T*F' to the eigenvalues of T
```

% compare the diagonal of F*T*F' to the eigenvalues of T
sprintf('Now follows eigenvals of T')
sprintf('Now follows eigenvals of T')
sort(diag(F*T*F'))'
sort(diag(F*T*F'))'
sort(eig(T))'
sort(eig(T))'
norm(sort(diag(F*T*F'))-sort(eig(T)),'fro') % dangerous as sort is imperfect
norm(sort(diag(F*T*F'))-sort(eig(T)),'fro') % dangerous as sort is imperfect
pause
pause
% compare the diagonal of F*H*F to the eigenvalues of H
% compare the diagonal of F*H*F to the eigenvalues of H
sprintf('Now follows eigenvals of H')
sprintf('Now follows eigenvals of H')
sort(diag(F*H*F)),
sort(diag(F*H*F)),
sort(eig(H))'
sort(eig(H))'
% Now do it the proper way
% Now do it the proper way
dum=diag(F*H*F);
dum=diag(F*H*F);
for k=2:ceil(N/2)
for k=2:ceil(N/2)
dum1=sqrt(dum(k)*dum(N-k+2));
dum1=sqrt(dum(k)*dum(N-k+2));
dum(k)=dum1;
dum(k)=dum1;
dum(N-k+2)=-dum1;
dum(N-k+2)=-dum1;
end

```
end
```

sprintf('Now follows eigenvals of H the proper way')
sort(real(dum)), \% lack of numerical precision leaves a small imaginary part norm(sort(real(dum))-sort(eig(H)),'fro') \% now it works as real-valued data

