Linear equations, geometry and algebra

Let us start this introduction/refresher by a very simple example, namely the equation

$$
2 x=6,
$$

where, obviously, x is a real number, that is $x \in \mathbb{R}^{1}$. What does this equation represent?

- Algebraically, it means the number 3.
- Geometrically, the solution is a point on the real axis:

Alternatively, the solution is represented by the vector to this point:

- Geometrically, an alternative interpretation of the equation is: How much of the vector to the point " 2 " should we take to reach the point " 6 "?

Things get much more interesting in higher dimensions. Let us nevertheless point out some features. The symbol x, by itself, stands for something that roams in \mathbb{R}^{1}, i.e. it lives with freedom to move in one-dimensional space. The (linear) restriction imposed by an equation such as $2 x=6$ puts x in handcuffs and restricts x to a fixed point, i.e. a zero-dimensional space. Let us carry on this argument in two dimensions.

Consider

$$
\left\{\begin{aligned}
x+2 y & =4 \\
3 x+4 y & =10
\end{aligned}\right.
$$

- Algebraically, we solve this system of equations by using a method named after Gauss, Gaussian elimination ${ }^{1}$. Subtract three times the first equation from the second to obtain the new system

[^0]\[

\left\{$$
\begin{aligned}
x+2 y & =4 \\
-2 y & =-2
\end{aligned}
$$\right.
\]

Now, solve by backtracking:

$$
\begin{gathered}
-2 y=-2 \quad \Rightarrow \quad y=1 \\
y=1 \quad \Rightarrow \quad x+2 \cdot 1=4 \quad \Rightarrow \quad x=2,
\end{gathered}
$$

so that the solution is

$$
\left\{\begin{array}{l}
x=2 \\
y=1
\end{array}\right.
$$

Note 1 Observe the triangular shape of the equation system in the processing.

Question 1 Can you construct a system of equations where the scheme given does not work? Hint: Such systems exist.

- Geometrically, each equation represents a line in the plane (cf. the 1D case, a point on an axis). We repeat the equations:

$$
\left\{\begin{array}{c}
x+2 y=4 \\
3 x+4 y=10
\end{array}\right.
$$

The solution is found as the intersection of the two lines.

Note 2 Observe that one equation of two "free" variables reduces the dimensionality from the plane to a line.

Note 3 Expand this to realize that one linear equation in three variables represents a plane in 3D and that a linear equation in N variables represents an $N-1$ dimensional hyperplane.

Question 2 Can you construct a system of equations where there is no intersection?

- The alternative geometrical illustration of the system is obtained by rewriting:

$$
\begin{aligned}
&\left\{\begin{aligned}
x+2 y & =4 \\
3 x+4 y & =10
\end{aligned}\right. \\
& \Longleftrightarrow \quad \\
&\binom{1}{3} x+\binom{2}{4} y=\binom{4}{10},
\end{aligned}
$$

so that the solution is obtained by the answer to the following question: How much (x) of the vector $\binom{1}{3}$ plus how much (y) of the vector $\binom{2}{4}$ add up to the vector $\binom{4}{10}$?

Note 4 Of course we find the solution

$$
\left\{\begin{array}{l}
x=2 \\
y=1
\end{array}\right.
$$

also in this way.
Note 5 The vectors $\binom{1}{3}$ and $\binom{2}{4}$ are linearly independent. This means that the only linear combination of the two vectors that add up to zero,

$$
\binom{1}{3} x+\binom{2}{4} y=\binom{0}{0}
$$

is given by $x=y=0$.
Note 6 A linear combination of $\binom{1}{3}$ and $\binom{2}{4}$ can be made to reach any point in the plane: The two vectors span the plane. As they span the plane and are linearly independent they form a basis for the plane.

One often writes this system of equation the following way:

$$
\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)\binom{x}{y}=\binom{4}{10} .
$$

Question 3 Can you construct a system of equations where the two vectors as used above do not span the plane?

You have probably noticed that the questions 1,2 , and 3 really are the same question, only different viewpoints of the same thing. Here follows, should you need it, exemplifying exercises.

Exercise 1 Solve (in all three ways)

$$
\left\{\begin{aligned}
x+2 y & =4 \\
2 x+4 y & =10
\end{aligned}\right.
$$

Exercise 2 Solve (in all three ways)

$$
\left\{\begin{array}{r}
x+2 y=4 \\
2 x+4 y=8
\end{array}\right.
$$

Now, let us generalize all this. Start with the long form of an N by N system:

$$
\left\{\begin{array}{lll}
a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 N} x_{N} & = & b_{1} \\
a_{21} x_{1}+\ldots & = & b_{2} \\
\cdot & & \\
\cdot & & b_{N}
\end{array}\right.
$$

We normally write this:

$$
A \mathbf{x}=\mathbf{b}
$$

where

$$
\left.\begin{array}{c}
A=\left[\begin{array}{ccc}
a_{11} & \cdots & a_{1 N} \\
\vdots & & \vdots \\
a_{N 1} & \cdots & a_{N N}
\end{array}\right] \\
\mathbf{x}=\left(\begin{array}{lll}
x_{1} & x_{2} & \cdots
\end{array} x_{N}\right.
\end{array}\right)^{T} \quad \mathbf{b}=\left(\begin{array}{ll}
b_{2} & b_{2}
\end{array} \cdots b_{N}\right)^{T} .
$$

We can also do something intermediate:

$$
\mathbf{a}_{1} x_{1}+\mathbf{a}_{2} x_{2}+\ldots+\mathbf{a}_{N} x_{N}=\mathbf{b},
$$

where $\mathbf{a}_{1} \ldots$ are the columns of the matrix A. This gives the important aspect of a matrix-vector product:

A matrix-vector product equals a linear combination of the columns of the matrix.

We can now list a set of equivalent statements regarding an N by N matrix A. We will in this list refer to concepts that may not be familiar to you yet. They will be defined in the material to come.

- The columns of A are linearly independent.
- The columns of A span (form a basis of) the N-dimensional space.
- The range space of A is the entire N-dimensional space.
- The matrix A has full rank.
- The determinant of A is not zero.
- No eigenvalue of A equals zero.
- The system of equations $A \mathbf{x}=\mathbf{b}$ has a unique solution in \mathbf{x} for any \mathbf{b}.
- The N rows of the equation $A \mathbf{x}=\mathbf{b}$ all represent $N-1$ dimensional hyperplanes that intersect in exactly one point.
- The rows of A are linearly independent.

Our perception of space and geometry is embodied in algebraic expressions in the coordinates of a given system. As we go on and define a scalar product, this contains the concepts of length and angle.

Please run the m-file lineqsys in Matlab. Display the source code in a separate window. Compare the figures produced with the source code and make sure you understand what is going on. Also, solve the exercises of the program.

```
% lineqsys.m
% Illustration of linear systems of equations
clear
A=[1 2 ; 1 0.5];
b=[6 ; 3];
% The analytical solution
x=A\b
% One row at a time
figure(1), clf, axis equal, hold on
u=[ll 3];
%eq1
v=1/A(1, 2)*([b(1) b(1)]-A(1, 1)*u);
plot(u,v,'r')
%eq2
v=1/A(2, 2)*([b(2) b (2)]-A(2,1)*u);
plot(u,v,'g')
% plot analytical solution
plot(x(1),x(2),'b*')
title('The row equations and the solution')
% One column at a time
figure(2), clf, axis equal, hold on
%plot column vectors
c1=A(:,1); c2=A(:,2);
plot([0 c1(1)],[0 c1(2)],'r',c1(1),c1(2),'rp')
plot([0 c2(1)],[0 c2(2)],'g',c2(1),c2(2),'gp')
% Now use the analytical solution
v1=x(1)*c1; v2=x(2)*c2;
plot([0 v1(1)],[0 v1(2)],'r--')
plot([v1(1) v1(1)+v2(1)],[v1(2) v1(2)+v2(2)],'g--')
% plot the location of b
plot([0 b(1)],[0 b(2)],'b',b(1),b(2),'bp')
title('The column vectors and the "b-vector"')
% Make the unique change to a22 to give a system without solution
% Be sure you understand what happens in figures 1 & 2
% Do not worry about the error printout generated by Matlab. There
% is an error, so the printout just shows how good Matlab is.
% With this changed a22, make the unique change to b2 that gives
% a system with infinitely many solutions.
```


[^0]: ${ }^{1}$ Gaussian elimination was actually used by the Chinese approximately 200 BC.

