Matrices, geometry, and mappings

Eigenvalues, eigenvectors and diagonalization

For a square matrix A, of dimension $N \times N$, the equation

$$
\mathbf{y}=A \mathbf{x}
$$

denotes a mapping from \mathbb{R}^{N} to \mathbb{R}^{N}. In general, the vectors \mathbf{x} and \mathbf{y} are of course not collinear. The interesting question arises: do there exist vectors \mathbf{g} such that, when mapped by A, they keep the original direction (or possibly reverse the direction)? Formulated differently, has the equation

$$
A g=\lambda \mathbf{g}
$$

any solution for λ scalar and $\mathbf{g} \in \mathbb{R}^{N}$? The answer is yes, and that both λ and the elements of \mathbf{g} in general are complex-valued, even if the elements of A are real-valued. Let us investigate the solutions by re-writing the equation:

$$
(A-\lambda I) \mathbf{g}=0
$$

Thus, \mathbf{g} must be in the null-space of $A-\lambda I$. It also follows that the determinant of $A-\lambda I$ must be zero. As the determinant is an N th degree polynomial in λ, it follows that A has exactly N eigenvalues. For eigenvectors, things are more complicated. If \mathbf{g} is an eigenvector, then so is $c \mathbf{g}, c$ scalar. Now, if we disregard this effect, then can we say that A has exactly N eigenvectors? The answer is no; there exist matrices that have less than N eigenvectors, but none having more than N.

We will proceed by demonstrating how certain matrices can be diagonalized. We will consider matrices such that their eigenvectors form a basis of \mathbb{R}^{N}. Thus

$$
A \mathbf{g}_{i}=\lambda_{i} \mathbf{g}_{i}, \quad i=1, \ldots, N
$$

and

$$
\sum_{i=1}^{N} c_{i} \mathbf{g}_{i}=0, \text { only for } c_{i}=0 \forall i
$$

It follows that

$$
A\left[\mathbf{g}_{1} \cdots \mathbf{g}_{N}\right]=\left[\mathbf{g}_{1} \cdots \mathbf{g}_{N}\right]\left[\begin{array}{ccc}
\lambda_{1} & & 0 \\
& \ddots & \\
0 & & \lambda_{N}
\end{array}\right]
$$

The proof is obtained by noting

- $A\left[\mathbf{g}_{1} \cdots \mathbf{g}_{N}\right]=\left[A \mathbf{g}_{1} \cdots A \mathbf{g}_{N}\right]$
- $\left[\mathbf{g}_{1} \cdots \mathbf{g}_{N}\right]\left[\begin{array}{ccc}\lambda_{1} & & 0 \\ & \ddots & \\ 0 & & \lambda_{N}\end{array}\right]=\left[\lambda_{1} \mathbf{g}_{1} \cdots \lambda_{N} \mathbf{g}_{N}\right]$

Introduce the notations

$$
G=\left[\mathrm{g}_{1} \cdots \mathrm{~g}_{N}\right]
$$

and

$$
\Lambda=\left[\begin{array}{ccc}
\lambda_{1} & & 0 \\
& \ddots & \\
0 & & \lambda_{N}
\end{array}\right]
$$

Now, G is invertible as its columns are linearly independent. Thus

$$
A G=G \Lambda \Longleftrightarrow G^{-1} A G=\Lambda
$$

Finally, here is a theorem that gives a sufficient condition for a matrix to have a basis of eigenvectors:

If the N eigenvalues of A are distinct, then A has a basis of eigenvectors.

The proof is by contradiction. Assume therefore that only $M(<N)$ eigenvectors are linearly independent. Use a permutation to assure that the M first are linearly independent. Then

$$
\mathbf{g}_{N}=\sum_{m=1}^{M} c_{m} \mathbf{g}_{m}, \quad \text { not all } c_{m} \text { zero }
$$

As a consequence,

$$
A \mathbf{g}_{N}=\sum_{m=1}^{M} c_{m} A \mathbf{g}_{m}
$$

which implies

$$
\lambda_{N} \mathbf{g}_{N}=\sum_{m=1}^{M} c_{m} \lambda_{m} \mathbf{g}_{m}
$$

In addition,

$$
\lambda_{N} \mathbf{g}_{N}=\sum_{m=1}^{M} c_{m} \lambda_{N} \mathbf{g}_{m}
$$

Subtract these two equations:

$$
0=\sum_{m=1}^{M} c_{m}\left(\lambda_{m}-\lambda_{N}\right) \mathbf{g}_{m}
$$

As $\lambda_{m} \neq \lambda_{N} \forall m$, and the set $\left\{\mathbf{g}_{m}\right\}_{1}^{M}$ is linearly independent, we have reached the desired contradiction as the only way we can satisfy the equation above is $c_{m}=0 \forall m$.

Finally, a note on the eigenvalues of a matrix, and powers of that matrix. If λ is an eigenvalue of A, i.e.

$$
A \mathbf{g}=\lambda \mathbf{g}
$$

then λ^{K} is an eigenvalue of A^{K}, as

$$
A^{K} \mathbf{g}=A^{K-1} A \mathbf{g}=A^{K-1} \lambda \mathbf{g}=\lambda A^{K-1} \mathbf{g}=\ldots=\lambda^{K} \mathbf{g} .
$$

Conversely, we can only make the obviously weaker statement. If λ is an eigenvalue of A^{K}, then an eigenvalue of A is to be found in the set $\left\{\lambda^{1 / K}\right\}$.

Let us study symmetric matrices from an eigenvalue and eigenvector point of view. Let us also free ourselves from the requirement of real-valued entries in the matrix. The Hermitian transpose of a matrix is the transpose and complex conjugate of the matrix

$$
A^{H}=\left(A^{T}\right)^{*} .
$$

By definition, a Hermitian matrix fulfills

$$
A=A^{H} .
$$

A real-valued symmetric matrix is Hermitian.
For vectors with complex-valued entries, we extend the definitions of scalar product and norm:

The scalar product between \mathbf{x} and \mathbf{y}, both in \mathbb{C}^{N}, is $\mathbf{x}^{H} \mathbf{y}=\sum_{n=1}^{N} x_{n}^{*} y_{n}$

The length (norm) of a complex vector is $\|\mathbf{x}\|=\left(\mathbf{x}^{H} \mathbf{x}\right)^{1 / 2}$

Here follow two important propositions:

Hermitian matrices have real-valued eigenvalues.

Proof: Let

$$
A \mathbf{g}=\lambda \mathbf{g}, \quad \mathbf{g} \neq 0 .
$$

Then

$$
\mathbf{g}^{H} A \mathbf{g}=\lambda \mathbf{g}^{H} \mathbf{g}=\lambda\|\mathbf{g}\|^{2}
$$

and

$$
\left(\mathbf{g}^{H} A \mathbf{g}\right)^{H}=\mathbf{g}^{H} A^{H} \mathbf{g}=\mathbf{g}^{H} A \mathbf{g},
$$

which shows that the left hand side, $\mathbf{g}^{H} A \mathbf{g}=\lambda\|\mathbf{g}\|^{2}$, is real-valued, as it is a scalar that equals its complex conjugate.

Eigenvectors of Hermitian matrices that belong to different eigenvalues are orthogonal.

Proof: $\quad A \mathbf{g}_{1}=\lambda_{1} \mathbf{g}_{1}, \quad A \mathbf{g}_{2}=\lambda_{2} \mathbf{g}_{2}$

$$
\begin{aligned}
\lambda_{1} \mathbf{g}_{1}^{H} \mathbf{g}_{2} & =\left(\lambda_{1} \mathbf{g}_{1}\right)^{H} \mathbf{g}_{2}=\left(A \mathbf{g}_{1}\right)^{H} \mathbf{g}_{2}= \\
& =\mathbf{g}_{1}^{H} A^{H} \mathbf{g}_{2}=\mathbf{g}_{1}^{H} A \mathbf{g}_{2}=\mathbf{g}_{1}^{H} \lambda_{2} \mathbf{g}_{2}=\lambda_{2} \mathbf{g}_{1}^{H} \mathbf{g}_{2},
\end{aligned}
$$

so we have

$$
\begin{aligned}
& \lambda_{1}\left(\mathbf{g}_{1}^{H} \mathbf{g}_{2}\right)=\lambda_{2}\left(\mathbf{g}_{1}^{H} \mathbf{g}_{2}\right), \quad \lambda_{1} \neq \lambda_{2} \\
\Longrightarrow &
\end{aligned}
$$

$$
\mathbf{g}_{1}^{H} \mathbf{g}_{2}=0
$$

Note: It is true that all Hermitian matrices have a full set of orthogonal eigenvectors, even for eigenvalues that have multiple occurrence. The proof is given in the appendix.

Note: It may be suggested that you have a look at the notes on "Norm-preserving linear mappings from \mathbb{R}^{N} to \mathbb{R}^{N} " before you proceed here.
\qquad

Now, for Hermitian matrices we have

$$
G^{-1} A G=\Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{N}\right)
$$

where the columns of G constitute an orthonormal basis. For real-valued matrices A, we thus find

$$
G^{T} G=\left(\begin{array}{c}
\mathbf{g}_{1}^{T} \\
\vdots \\
\mathbf{g}_{N}^{T}
\end{array}\right)\left(\mathbf{g}_{1} \ldots \mathbf{g}_{N}\right)=I
$$

which greatly simplifies matters as G^{-1} is simple to compute: $G^{-1}=G^{T}$ For complex-valued matrices we find

$$
G^{H} G=\ldots=I,
$$

so that the diagonalization in both cases can be written

$$
G^{H} A G=\Lambda .
$$

Eigenvalues and eigenvectors are useful. One use is in the calculation of the principal axes and moments of inertia of a rigid body. Another is when solving differential equations by transform methods.

Please run the m-files eig1 and eig2 (after the Appendix).

Appendix: The spectral theorem ${ }^{1}$

Theorem: Let A be $N \times N$, Hermitian. Then, there exists a unitary matrix U (see norm-preserving linear mappings) and a real-valued diagonal matrix Λ so that

$$
U^{-1} A U=\Lambda
$$

The columns of U are eigenvectors of A, the diagonal of Λ holds the eigenvalues of A.

The proof is by 'downwards' induction, and uses the following lemma.
Lemma: Let A be Hermitian and \mathbf{g} an eigenvector, i.e. $A \mathbf{g}=\lambda \mathbf{g}$ for some λ. Then, if \mathbf{v} is orthogonal to \mathbf{g}, then $A \mathbf{v}$ is orthogonal to \mathbf{g}.

Proof of lemma:

$$
(A \mathbf{v})^{H} \mathbf{g}=\mathbf{v}^{H} A^{H} \mathbf{g}=\mathbf{v}^{H} A \mathbf{g}=\mathbf{v}^{H} \lambda \mathbf{g}=0
$$

Proof of the spectral theorem:

Any matrix has at least one eigenvector, as

$$
A \mathbf{g}=\lambda \mathbf{g}
$$

has at least one solution. This follows from the fact that $\operatorname{det}(A-\lambda I)=0$ is an N th degree polynomial in λ.

Let \mathbf{g} be a normalized eigenvector and construct a unitary matrix U_{1} by letting g be its first column, and expand the rest of the columns any way you like (there is always an ON-base in \mathbb{C}^{N}). Then

$$
\begin{aligned}
& U_{1}^{-1} A U_{1}=U_{1}^{H} A U_{1}= \\
& =\left[\begin{array}{c}
\mathbf{g}^{H} \\
\text { rest }
\end{array}\right] A\left[\begin{array}{ll}
\mathbf{g} & \text { rest }]=\left[\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & & & \\
\vdots & & A_{2} & \\
0 & & &
\end{array}\right] ~ . ~
\end{array}\right.
\end{aligned}
$$

Of course, A_{2} is Hermitian, $N-1 \times N-1$:

[^0]\[

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
\lambda_{1}^{H} & 0 & \cdots & 0 \\
0 & & & \\
\vdots & & A_{2}^{H} & \\
0 & & &
\end{array}\right]=\left[\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & & & \\
\vdots & & A_{2} & \\
0 & & &
\end{array}\right]=\left(U_{1}^{H} A U_{1}\right)^{H}=U_{1}^{H} A^{H} U_{1}=} \\
& =U_{1}^{H} A U_{1}=\left[\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & & & \\
\vdots & & A_{2} & \\
0 & & &
\end{array}\right]
\end{aligned}
$$
\]

Now, apply the same argument to A_{2} :

$$
U_{2}^{-1} A_{2} U_{2}=\left[\begin{array}{cccc}
\lambda_{2} & 0 & \cdots & 0 \\
0 & & & \\
\vdots & & A_{3} & \\
0 & & &
\end{array}\right]
$$

Combine

$$
\left[\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & & & \\
\vdots & & U_{2}^{-1} & \\
0 & & &
\end{array}\right] U_{1}^{-1} A U_{1}\left[\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & & & \\
\vdots & & U_{2} & \\
0 & & &
\end{array}\right]=\left[\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & \cdots \\
0 & \lambda_{2} & 0 & \cdots \\
\vdots & 0 & & 0 \\
\vdots & \vdots & A_{3} & \\
0 & 0 & &
\end{array}\right]
$$

Repeat in total N times, and note that a product of unitary matrices is unitary:

$$
U^{-1} A U=\Lambda
$$

The proof is completed.

```
% eig1.m
% eigenvalues and vectors
clear
```

\% A random matrix
sprintf('A random matrix')
$\mathrm{A}=\mathrm{randn}(2,2)$;
[V,D] = eig(A); D, V
pause
\% symmetric implies real-valued eigenvalues
sprintf('A symmetric matrix')
$B=A+A$ ';
[V,D] = eig(B); D, V
pause
\% 'square' implies non-negative definite
sprintf('A non-negative definite matrix')
$\mathrm{C}=\mathrm{A} * \mathrm{~A}^{\prime}$;
[V,D] = eig(C); D, V
pause
\% eigenvalues to $\mathrm{A} * \mathrm{~A}$
sprintf('Error in eigenvalues of squared matrix minus squared eigenvalues') norm(sort(eig(A).*eig(A))-sort(eig(A*A)),'fro') \% sort seems to work here pause
\% A pathological matrix
sprintf('A matrix that does not have a full set of eigenvectors')
[V,D]=eig([3 1;0 3]); D, V
\% eig2.m
\% Symmetric matrices, eigenvectors and ON-bases.
clear
\% Generate a random, square matrix
$\mathrm{N}=100$;
$\mathrm{A}=\mathrm{randn}(\mathrm{N}, \mathrm{N})$;
\% Make it symmetric
$\mathrm{A}=\mathrm{A}+\mathrm{A}{ }^{\prime}$;
$[\mathrm{V}, \mathrm{D}]=\mathrm{eig}(\mathrm{A})$;
sprintf('The eigenvectors are orthonormal')
norm(V*V'-eye(N), 'fro')
pause
sprintf('The inverse of the eigenvector matrix equals the transpose')
norm(V'-inv(V),'fro')
pause
sprintf('The matrix is diagonalized by the eigenvector matrix')
norm(D-V'*A*V,'fro')
pause
sprintf('The eigenvalues are real-valued')
norm(real(D)-D,'fro')

[^0]: ${ }^{1}$ Adapted from Jöran Bergh

